
ADDITIVE COMBINATORICS

THOMAS F. BLOOM

These are lecture notes for the Part III lecture course given in Lent Term 2021
at the University of Cambridge.

Two textbooks in particular have been useful in preparing these lecture notes:

• Additive Combinatorics by T. Tao and V. Vu, Cambridge University Press,
2006.
• Combinatorial Number Theory and Additive Group Theory by A. Geroldinger

and I. Ruzsa, Birkhäuser Basel, 2009.

Much of the material in this course, however, has not appeared in any textbook,
and is taken directly from the research literature. Any inaccuracies or mistakes are,
of course, entirely my own.

If you have any questions, concerns, or corrections, please email me at
bloom@maths.ox.ac.uk.

What is additive combinatorics?

Additive combinatorics is an old subject, although the term ‘additive combi-
natorics’ was first coined (to the best of my knowledge) by Tao and Vu in 2006,
in their textbook of the same name. Results of an additive combinatorial flavour
go back at least 100 years, although they were often thought of as belonging to
additive/combinatorial number theory.

Additive combinatorics is, at heart, the study of combinatorial questions in-
volving addition: What does counting information (counting the size of a set, or
counting the number of sums that can be formed from that set) imply about alge-
braic structures (e.g. is the set a subgroup, or an arithmetic progression? Is it close
to being such? Does it contain one?). It can be distinguished from number theory
in that the assumptions we work from are often very mild - e.g. rather than dealing
with special structured sets, such as the primes or the zeros of some polynomial,
we are concerned with quite arbitrary sets.

Much of additive combinatorics can be viewed as the quest for understanding
exactly what it means for a set (e.g. of integers) to be ‘additively structured’. From
the algebraic point of view, one might insist that a set be closed under addition,
and hence be a subgroup. But there is a much richer collection of sets which are
‘approximately structured’. For example, if we take some random 1% of a subgroup,
is that still structured? How much?

There are a number of ways to measure how structured a set is, and we will
explore the connection between these ways. Often the hard part is to go from some
quite weak, statistical, measures (such as a set have many solutions to a+b = c+d)
to those which embody much more rigid algebraic structure.

Structure of the course. Additive combinatorics uses many different methods
from all across pure mathematics: combinatorics, probability, harmonic analysis,
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group theory, ergodic theory. We will not attempt to cover all, or even most, of the
many different flavours of modern additive combinatorics. Two notable omissions,
for example, are anything from the ergodic theoretic point of view, and anything
concerning the theory of ‘higher order Fourier analysis’.

Our aim is to present the ‘blunt edge’ of research in that part of modern additive
combinatorics which uses analytic techniques (either Fourier analysis or analysis of
an ‘elementary’ nature) to answer quantitative questions. Although we will not give
the best-known results, we will present the same kind of methods and techniques
that are used.

The material in this course has been divided into four chapters. Chapter 2 is
essentially independent of the other three, but the other three have some interde-
pendency.

(1) Elementary techniques
(2) Fourier analysis and Roth’s theorem
(3) Almost-periodicity
(4) Inverse sumset results

Prerequisites. There are no formal prerequisites for this course, aside from a
certain amount of mathematical maturity. We will be using finite Fourier analysis
and basic probability theory, but both entirely over finite objects, and so there are
no analytic technicalities to plague us here. Everything needed will be developed
from scratch in a ‘low-brow’ way suitable for our applications – in particular, you
should not avoid this course just because of an aversion to Fourier analysis as you
might have seen it elsewhere!



CHAPTER 1

Elementary tools

In this chapter we will introduce some basic concepts of additive combinatorics,
and develop some useful tools to work with them. All our methods will be elemen-
tary (in particular, there is no Fourier analysis in this section).

Before we begin properly, we give a quick overview of some our basic assumptions
and notational choices.

Asymptotic notation. We write f(x) = O(g(x)) if there exists some constant
C > 0 such that |f(x)| ≤ C |g(x)| for all sufficiently large x. We will also use the
Vinogradov notation f � g to denote the same thing (so that f = O(g) and f � g
are equivalent). Occasionally we will use subscript notation to denote dependence
of the constants. For example, f �δ g means there exists some constant C(δ)
depending on δ such that |f(x)| ≤ C(δ) |g(x)| for all sufficiently large x (where
sufficiently large may also depend on δ). We may write O(f) to denote some
unspecified function g which satisfies g = O(f) (for example, one can say (x+h)2 =
x2 +Oh(x)).

We write f = o(g) if limx→∞
f(x)
g(x) = 0 . We will also write f � g to mean

f � g � f .

Objects. All sets will be assumed finite and non-empty, unless explicitly stated
otherwise. Our usual setting will be an unspecified abelian group, which we denote
by G. By default, when finite, the size of G will be denoted by N . We will write
Z/NZ for the cyclic group of order N , although we may write Fp (by which we
understand the additive group of the field) when we want to emphasise that the
order is prime.

Although much of what we do will be valid for arbitrary finite subset of an
abelian group, it might help if you pick your favourite group as an example to use
throughout. The most popular choices are either

Fn2 if you’re a computer scientist),

Z (if you’re a number theorist), or

Z/NZ (if you’re a number theorist who’s uncomfortable with infinity).

In practice, for the questions we will be considering, the latter two settings are
equivalent, but there are often fundamental differences between Fnp (with p fixed
and n→∞) and Z/NZ. Proofs are often much cleaner in the former, in large part
due to the many different subgroups available.

We use ⊂ to include the case of equality (where others may write ⊆).
3
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Functions. We will usually adopt an analytic point of view, in particular often
viewing sets A ⊂ G as their indicator function

1A(x) =

{
1 if x ∈ A and

0 otherwise.

We define the convolution of two functions f, g : G→ C by

f ∗ g(x) =
∑
y∈G

f(y)g(x− y) =
∑

y+z=x

f(y)g(z).

It’s convenient to define the difference convolution by

f ◦ g(x) =
∑
z∈G

f(x+ z)g(z) =
∑

y−z=x
f(y)g(z).

We also define the inner product by

〈f, g〉 =
∑
x

f(x)g(x).

We note here the trivial, but useful, adjoint property, that

〈f ∗ g, h〉 = 〈f, h ◦ g〉.
Indeed, this is nothing more than an analytic expression of the triviality

x+ y = z if and only if x = z − y.

1. Sum sets

Given any pair of sets A,B we can define their sum set

A+B = {a+ b : a ∈ A and b ∈ B},
or difference set

A−B = {a− b : a ∈ A and b ∈ B}.
It is important to note that these are operations on sets, and do not obey any
nice algebraic laws - in particular they do not cancel, so (A + B) − B 6= A (in
general). Rather, they should be viewed as combinatorial objects whose structure
is influenced by the additive structure of A and B. Of course, the difference set
is just a special case of the sum set construction, and could instead be viewed as
A+ (−B).

We have the trivial inequalities

|A| ≤ |A+B| ≤ |A| |B| .
Indeed, for any fixed b ∈ B, the set {a+ b : a ∈ A} has size |A| and is contained in
A+B, and there is an obvious surjection from A×B → A+B with (a, b) 7→ a+ b.

In the special case A = B the upper bound can be improved since this surjection
maps (a1, a2) and (a2, a1) to the same element, yielding

|A+A| ≤ |A| (|A|+ 1)

2
.

Both these trivial lower and upper bounds are sharp. For example, if A is itself
a group, then A + A = A, and so |A+A| = |A|. On the other hand, if A is such
that all its pairwise sums are distinct, for example A = {1, 2, 4, . . . , 2n−1}, then
the upper bound is sharp. The case for equality for the lower bound is easy to
characterise.
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Lemma 1. |A+A| = |A| if and only if A is a coset of a subgroup.

Proof. Since both properties (the size of the sumset and being a coset) are invariant
under translation, we can without loss of generality assume that 0 ∈ A, and so
A ⊂ A + A, and so A + A = A. For any a ∈ A, there are |A| many distinct
translates a + a′ for a′ ∈ A, all of which belong to A + A = A, and hence one of
them must be 0, and so a′ = −a ∈ A. Thus A is closed under sums and inverses,
and is a subgroup. �

In groups where there are many non-trivial finite subgroups we have a plentiful
supply of sets such that |A+A| = |A|. What about groups where there are no
non-trivial finite subgroups? Then we know that if |G| > |A| > 1 we must have
|A+A| > |A|. It is a simple fact, but one with suprisingly far-reaching conse-
quences, that for the integers something stronger can always be said.

Lemma 2. If A ⊂ Z then
|A+A| ≥ 2 |A| − 1.

Equality holds if and only if A is an arithmetic progression.

Proof. Suppose the elements of A are ordered like a1 < a2 < · · · < an. This induces
an ordering on some elements of A+A:

2a1 < a1 + a2 < · · · < a1 + an < a2 + an < · · · < an−1 + an < 2an.

In particular, these 2n− 1 sums are all distinct, and hence |A+A| ≥ 2n− 1.
For the second part, it suffices to show that if equality holds then for any 1 ≤ i <

n, there is some j > i such that aj − ai = a2 − a1. Downwards induction on i then
implies that in fact j = i+ 1, and hence if d = a2 − a1 then ai = a1 + d(i− 1), and
A is an arithmetic progression as required. Consider, for some 2 ≤ i < n, the sum
a2 +ai ∈ A+A. Since |A+A| = 2n−1, the above 2n−1 elements are the entirety
of A+A, and so one of them must be a2 +ai. Since i < n we have a2 +ai < aj +an
for all 2 ≤ j ≤ n, and so a2 + ai = a1 + aj for some j > i as required. �

This proof is only valid for Z, and uses the ordering of Z in a crucial way. It
is natural to wonder if a similar result holds for other groups without non-trivial
finite subgroups, in particular for Fp. The answer is yes (once one incorporates the
obvious constraint that the sumset cannot be larger than p), and is one of the early
jewels of additive combinatorics.

Lemma 3 (Cauchy-Davenport1). If A,B ⊂ Fp then

|A+B| ≥ min(|A|+ |B| − 1, p).

Proof. 1We will show that the stated inequality is true for any fixed B and all
A ⊂ Fp by induction on the size of B. The case |B| = 1 is trivial. Suppose that
|B| ≥ 2, and let b1, b2 be two distinct elements of B, with z = b2 − b1 6= 0. If
A + z ⊂ A then it immediately follows that A + kz ⊂ A for all k ≥ 1, and hence
A = Fp (since any non-zero element of Fp additively generates the entire group), in
which case the claim is trivial.

Thus A+ z 6⊂ A, and so there exists a ∈ A such that a+ z 6∈ A. It follows that,
if x = a− b1, then B + x contains at least one element which is not in A (namely

1A strange title, given that Davenport was born 50 years after Cauchy died! This is its
customary label; it was proved by Cauchy [2] in 1813 and independently rediscovered by Davenport

[3] in 1935.
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b2 + a− b1), and at least one element that is in A (namely a = b1 + a− b1 itself).
Thus

1 ≤ |A ∩ (B + x)| < |B| .
We now note that, if A′ = (A− x) ∪B and B′ = A ∩ (B + x), then

A′ +B′ ⊂ A+B.

(This transformation, from (A,B) 7→ (A′, B′), has found many more applications,
and is sometimes called the ‘Dyson e-transform’.)

Indeed, if a′+ b′ ∈ A′+B′ with a′ ∈ B, then b′ ∈ A forces a′+ b′ ∈ A+B, while
if a′ ∈ A− x, then b′ ∈ B + x forces the same. Hence by the inductive hypothesis,
valid since 1 ≤ |B′| < |B|,

|A+B| ≥ |A′ +B′| ≥ min(|A′|+ |B′| − 1, p).

The proof is now completed by noting that

|A′|+ |B′| = |A|+ |B| − |A ∩ (B + x)|+ |B′| = |A|+ |B| .
�

Just as in the integers, we can characterise the case of equality as arithmetic
progressions: that is, if |A+B| = |A| + |B| − 1 then (aside from edge cases) A
and B must both be arithmetic progressions of the same step. This is known as
Vosper’s theorem, and we leave a proof for the first examples sheet.

We say that A has ‘small doubling’ if |A+A| ≤ K |A| for some ‘small’ K (usually
K being bounded by some absolute constant). We have now seen two examples
of sets with small doubling: cosets of subgroups (where K = 1) and arithmetic
progressions (where K = 2− 1

|A| ).

Given any sets with small doubling it is easy to generate more, by two simple
constructions: passing to a large subset and/or passing to a sumset with some small
set. If |A+A| ≤ K |A| and X ⊂ A then

|X +X| ≤ |A+A| ≤
(
K
|A|
|X|

)
|X| .

In particular, if |X| ≥ K−O(1) |A|, then A having doubling K implies X has dou-
bling at most KO(1). Alternatively, if X = A+ Y , then

|X +X| = |A+A+ Y + Y | ≤ |Y |2 |A+A| ≤ K |Y |2 |A| .
Thus, if |Y | ≤ KO(1), then A having doubling K implies X = A+ Y has doubling
at most KO(1).

It is a remarkable fact, and one of the great achievements of additive combina-
torics, that these trivial constructions account for all of the sets with small doubling,
in a way which can be made quite quantitatively explicit. Results of this sort, that
give some structural information about sets with small doubling, are known as
inverse sumset results, and we have already seen a couple:

if |A+A| ≤ |A| then A is a coset of a subgroup,

if A ⊂ Z and |A+A| < 2 |A| then A is an arithmetic progression.

Unfortunately, these only given information when K < 2. The situation with larger
K (e.g. K = 100) is much more complicated, but by the end of this course we will
have proved an explicit inverse sumset result that gives non-trivial information
about A even in the regime K ≈ log |A|, say.
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1.1. Sumset calculus. There are a number of useful lemmas on sumsets available
via elementary methods. At the heart of such proofs is often an additive triviality
such as a+ b = b+ a or (a− c) + (c− b) = a− b, but there is an enduring elegance
in how these trivialities are exploited.

The collection of such lemmas is sometimes called the ‘sumset calculus’. The two
most important, and frequently used, tools in sumset calculus are Ruzsa’s triangle
inequality and Plünnecke’s inequality. We begin with the former, which loosely
says that if A and B both have small sumset compared to some other set C, then
the sumset A+B itself must be small.2

Lemma 4 (Ruzsa’s triangle inequality [8]). For any A,B,C,

|A+B| ≤ |A+ C| |B − C|
|C|

.

Proof. For each x ∈ A+B fix an arbitrary representation x = ax+bx, and consider
the map

(c, x) 7→ (c+ ax, bx − c).
This is a well-defined function from C×(A+B) to (A+C)×(B−C). Furthermore,
since (c+ ax) + (bx− c) = ax + bx = x, the x component can be uniquely recovered
from its image. Then, however, we can recover ax, and hence also recover c as
(c+ ax)− ax. Thus this function is an injection, and the proof is complete. �

Plünnecke’s inequality addresses what happens if we iterate the sumset opera-
tion. That is, just as we can define A+A, we can define A+A+A, A+A+A+A,
and so on, in the obvious fasion. In brief, we write kA for the k-fold sumset, so
that, for example, 2A = A+A. (Note that it does not mean A dilated by k!) If we
know that A has small doubling then can we deduce that kA remains (relatively)
small?

Plünnecke’s inequality says yes we can! In its most usefully applied form, it says
that if |A+A| ≤ K |A|, then for any k ≥ 1, |kA| ≤ Kk |A|. In particular, if A has a
small sumset, then it also has small iterated sumsets. The original proof of this by
Plünnecke [7] is quite complicated, and can be found, for example, in [10, Section
6.5]. More recently, Petridis [6] has found an alternative beautiful proof, which is
much shorter.

The key lemma in the approach of Petridis is the following.

Lemma 5 (Plünnecke-Petridis inequality [6]). For any A and B there exists X ⊂ A
such that, for all C,

|C +X +B|
|C +X|

≤ |A+B|
|A|

.

Proof. As a clue for where to start, observe that if the bound holds even when
|C| = 1, then, whatever X is, it must satisfy

|X +B|
|X|

≤ |A+B|
|A|

.

It seems a reasonable choice, then, to choose some X ⊂ A such that this inequality
holds and the left hand side is as small as possible (note that the space of such X

2Note the obvious parallel with the metric triangle inequality, if one thinks of ‘A + B is small’
as a way of measuring the ‘closeness’ between A and B. This metric viewpoint is developed a

little further in [10, Section 2.3].
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is non-empty since X = A suffices, so such a minimal X certainly exists). We will
demonstrate that any such X works; in fact, we will prove the stronger claim that,
for all C,

|C +X +B|
|C +X|

≤ |X +B|
|X|

.

To prove this, we use induction on the size of C. The case when |C| = 1 is
trivial, so suppose that |C| > 1. Choose some arbitrary c ∈ C, and let C ′ = C\{c}.
Let Xc ⊂ X be maximal such that C ′+X and c+Xc are disjoint. By maximality,
c+ (X\Xc) ⊂ C ′ +X, whence c+ (X\Xc) +B ⊂ C ′ +X +B and

C +X +B ⊂ (C ′ +X +B) ∪ ((c+X +B)\(c+ (X\Xc) +B)).

Taking cardinalities of both sides, and using both the inductive hypothesis and
minimality of |X +B| / |X|, we have

|C +X +B| ≤ |C ′ +X +B|+ |X +B| − |(X\Xc) +B|

≤ |X +B|
|X|

|C ′ +X|+ |X +B| − |X +B|
|X|

|X\Xc|

=
|X +B|
|X|

|C ′ +X|+ |X +B|
|X|

(|X| − |X\Xc|)

=
|X +B|
|X|

(|C ′ +X|+ |Xc|)

=
|X +B|
|X|

|C +X| ,

and the proof is complete. �

Since this holds for any set C, iterating it leads to the following useful corollary,
and it is some form of this that is usually meant by invocations of Plünnecke’s
inequality.

Corollary 1 (Plünnecke’s inequality). Suppose that |A+B| ≤ K |A|. There exists
X ⊂ A such that, for all h ≥ 1,

|X + hB| ≤ Kh |X| .

In particular,

|hB| ≤ Kh |A| .

Proof. We will show by induction on h that the X given by Lemma 5 works. The
case h = 1 is immediate from Lemma 5 taking C to be any singleton set. The
general case follows by induction and Lemma 5 applied with C = (h− 1)B.

The second conclusion follows immediately from the first since trivially |hB| ≤
|X + hB| and |X| ≤ |A|. �

Ruzsa’s triangle inequality immediately allows this result to be generalised to
mixed sum and difference sets.

Corollary 2. Suppose that |A+B| ≤ K |A|. For any k, l ∈ N with k + l ≥ 2,

|kB − lB| ≤ Kk+l |A| .
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Proof. By Ruzsa’s triangle inequality, with X being as in Corollary 1,

|kB − lB| ≤ |X + kB| |X + lB|
|X|

≤
(
|A+B|
|A|

)k+l

|X| .

�

2. Additive energy

The sumset is one useful way to measure structure, but not the only one. One
disadvantage is that it is not very robust - for example, if we take a set A with
small doubling, and add in just a few random elements, then the size of the sumset
could increase massively.

It is often more convenient, especially in the kind of analytic arguments we will
be using, to use instead the notion of additive energy.

Definition 1 (Additive Energy). There are various ways to define this:
one way is as a count of solutions to a symmetric linear equation in four
variables:

E(A) = #{(a, b, c, d) ∈ A4 : a+ b = c+ d}.
Equivalently, one can write this as

E(A) =
∑
x

 ∑
a,b∈A

1a+b=x

2

=
∑
x

1A ∗ 1A(x)2.

That is, the additive energy is just the (squared) L2 norm of the convolution
1A ∗1A. One can imagine using other norms here – indeed, the size of the sumset is
precisely the size of the support of 1A ∗ 1A, which is sometimes called the L0 norm
(although it’s not really a norm).

It is also useful to note that (since a+ b = c+ d if and only if a− c = d− b)

E(A) = #{(a, b, c, d) ∈ A4 : a− c = d− b} =
∑
x

1A ◦ 1A(x)2.

Roughly speaking, just as “small doubling constant” (i.e. |A+A| / |A| small)
is one way to quantify how structured a set is, “large additive energy” serves the
same purpose. Intuitively, we expect these properties to correlate, since if there are
many ‘collisions’ of a+ b = c+d then we expect there to be few distinct sums a+ b
inside the sumset A+A, and vice versa.

One direction of this is a straightforward consequence of the Cauchy-Schwarz
inequality, which we record as a lemma, along with the trivial size bounds on the
additive energy.

Lemma 6.
|A|2 ≤ E(A) ≤ |A|3 .

Furthermore,

E(A) ≥ |A|4

|A+A|
.

Proof. The lower bound comes from counting those solutions to a+b = c+d where
a = c and b = d. The upper bound is true since once we have fixed any three
a, b, c ∈ A the choice of d such that a+ b = c+ d is fixed.
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To connect it with the size of the sumset, we use the Cauchy-Schwarz inequality.
Namely, we note that

|A|2 =
∑
x

1A ∗ 1A(x),

since every pair (a, b) ∈ A2 is a solution to exactly one equation of the type a+b = x.
Since 1A ∗ 1A is supported on A+A, by the Cauchy-Schwarz inequality,

|A|4 ≤ |A+A|
∑
x

1A ∗ 1A(x)2 = |A+A|E(A)

as required. �

In particular, if A has small doubling then it has large energy. Despite what
naive intuition might suggest, the converse does not hold, in that large energy does
not necessarily force a small sumset - indeed, if we take A to be the union of an
arithmetic progression and a geometric progression of equal sizes, then the sumset
will be very large, |A+A| � |A|2 (from the geometric progression) but the additive

energy will also be very large, E(A)� |A|3 (from the arithmetic progression).
Fortunately, we can show that this is the only obstruction, and that if E(A) is

large then there is a relatively large subset A′ ⊂ A such that |A′ −A′| is small.
This is known as the Balog-Szemerédi-Gowers lemma3, of which we will prove the
following version. This is a reasonably strong form of the lemma, and we will follow
closely the proof of Schoen [9].

Lemma 7 (Balog-Szemerédi-Gowers). If E(A) ≥ K−1 |A|3 then there exists a
subset A′ ⊂ A such that |A′| � K−1 |A| and

|A′ −A′| � K5 |A| .

The precise exponents of K here are rarely important in practice - what matters
is that both the size of A′ and the size of A′−A′ have only a polynomial dependence
on K. As we will see throughout this course, structural results with polynomial
dependencies are both rare and useful! Some ways to improve the exponents here
are given on the examples sheet (though the exact best exponent possible remains
an open problem).

Digression: The First Moment Method. Before we prove the Balog-Szemerédi-
Gowers lemma, we digress briefly to discuss the first moment method, which we
shall use in the proof. This is a simple application of probability, but this style of
proof is extremely useful in combinatorics.

Put succinctly, the first moment method that we require is the observation that,
for any real-valued random variable X, we have X ≥ EX with positive probability.
This is coupled with the observation that expectation is linear, which makes it
very straightforward to calculate. (More generally, one might use the first moment
method to refer to more quantitative uses of the expectation, involving things like
Markov’s inequality.)

Since we’ll just be dealing with probability measures on finite sets, you don’t need
to worry about any serious use of probability theory. Indeed, using the language of

3Note the lack of alphabetical order! Some form of this, with very poor dependency on K,
was proved by Balog and Szemerédi [1], and then Gowers [4] found an alternative approach which

delivered polynomial-type bounds, which were needed for his application to Szemerédi’s theorem.
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probability is just for convenience, and one could phrase these arguments as purely
counting arguments. But the probabilistic viewpoint is a useful and suggestive one.

Back to the proof. The proof will be done in two stages. For the first, we will
find a large subset X ⊂ A such that ‘many’ differences in X−X have many different
representations as elements of A − A. In the second stage we will leverage this to
find some large X ′ ⊂ X such that X ′−X ′ is small, as required. (Again, this proof
is a slight weakening of one due to Schoen [9], which proves a slightly stronger
version of the Balog-Szemerédi-Gowers lemma, with the best known exponents at
the time of writing.)

Lemma 8. If E(A) ≥ K−1 |A|3 then for any 0 < c < 1 there is some X ⊂ A such

that |X| � K−1 |A| and for all but at most c |X|2 many pairs (a, b) ∈ X2,

1A ◦ 1A(a− b)� cK−2 |A| .

Proof. The set X will be of the form A ∩ (A+ s), where s is a random element of
A − A (which is necessary or else X will be empty). The simplest way to choose
such an s is uniformly, with probability 1/ |A−A| – the problem there is that we
don’t have control over the size of A − A, so want to avoid it appearing in our
calculations.

Instead, we choose the next most natural way to choose a random element of
A − A, which is to note that 1A ◦ 1A is a function we already know something
about (by control of E(A)) and whose support is A − A. Thus we choose s with

probability 1A ◦ 1A(s)/ |A|2. The expected size of X is

E |X| = 1

|A|2
∑
a∈A

∑
s

1A ◦ 1A(s)1A(a− s)

=

∑
s 1A ◦ 1A(s)2

|A|2
.

= E(A)/ |A|2

For any G ⊂ A2, the expected number of pairs of X2 in G is

E ∣∣X2 ∩G
∣∣ =

∑
(a,b)∈G

P(a, b ∈ X)

=
1

|A|2
∑

(a,b)∈G

∑
s

1A ◦ 1A(s)1A(a− s)1A(b− s).

The innermost sum we bound using the trivial observation that 1A ◦ 1A(s) ≤ |A|:∑
s

1A ◦ 1A(s)1A(a− s)1A(b− s) ≤ |A|
∑
x

1A(a− x)1A(b− x)

= |A| 1A ◦ 1A(a− b).

It follows that

E ∣∣X2 ∩G
∣∣ ≤ 1

|A|
∑

(a,b)∈G

1A ◦ 1A(a− b).
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In particular, if G is the set of pairs where

1A ◦ 1A(a− b) ≤ c

2

E(A)2

|A|5
,

then (using the trivial bound |G| ≤ |A|2)

E ∣∣X2 ∩G
∣∣ ≤ c

2

E(A)2

|A|4
.

It follows that, since by the Cauchy-Schwarz inequality we have E |X|2 ≥ (E |X|)2,

E
(
|X|2 − 1

c

∣∣X2 ∩G
∣∣) ≥ 1

2

E(A)2

|A|4
.

By the first moment method there is some X such that

|X|2 − 1
c

∣∣X2 ∩G
∣∣ ≥ 1

2

E(A)2

|A|4
.

In particular, such an X must satisfy

|X| ≥ E(A)

21/2 |A|2

and
∣∣X2 ∩G

∣∣ ≤ c |X|2. By our choice of G, this means that all but at most c |X|2
many pairs a, b ∈ X satisfy

1A ◦ 1A(a− b) ≥ c

2

E(A)2

|A|5
,

and the lemma is proved. �

We have found a large subset of X with a lot of structure, in particular that
many elements of X −X are well-represented by differences from A − A. It does
not follow immediately that |X −X| is small, however - for this we need to refine
X a little further.

Proof of Theorem 7. We apply Lemma 8 with c = 1/8. Noting that 1A◦1A(a−b) =
1A◦1A(b−a), we can define a graph G with vertex set X such that a, b are connected
by an edge in G if and only if a 6= b and 1A ◦ 1A(a − b) � K−2 |A|. By Lemma 8

there are at most 1
8 |X|

2
many pairs (a, b) ∈ X2 where this lower bound fails, and

hence at least
(|X|

2

)
− 1

16 |X|
2

many edges in G.
In particular, if d(x) denotes the degree of a vertex x in G, then

(1)
∑
x∈X

d(x) ≥ 7
8 |X|

2 − |X| .

Let A′ be the subset of X consisting of those elements of degree at least 3
4 |X| in

G. The contribution to (1) from those x ∈ X\A′ is at most 3
4 |X|

2
. In particular,

|X| |A′| ≥
∑
x∈A′

d(x) ≥ 1
8 |X|

2 − |X| ,

whence |A′| � |X| (note that we can certainly assume |X| ≥ 10, for example, or
else the conclusion holds trivially).
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We now claim that for any x ∈ A′−A′ there are� K−4 |A|2 |X|many quadruples
(a1, a2, a3, a4) ∈ A4 such that x = a1−a2 +a3−a4. Assuming this for the moment,

since the total number of such quadruples is trivially at most |A|4, we have

|A|4 � |A′ −A′|K−4 |A|2 |X| .
Recalling that |A′| � |X| � K−1 |A|, the result follows.

It remains to prove the claimed lower bound on the number of quadruples. Fix
some4 a, b ∈ A′ such that x = a− b. By choice of A′, there must be ≥ 1

2 |X| many
elements c ∈ X such that both (a, c) and (b, c) are edges in G, whence there are
� K−2 |A| many (a1, a2) ∈ A2 such that a1 − a2 = a − c, and similarly many
(a3, a4) ∈ A2 such that a3 − a4 = b− c. Any choice of such representations gives a
quadruple such that a1 − a2 − a3 + a4 = x, since

x = a− b = (a− c)− (b− c) = (a1 − a2)− (a3 − a4).

Finally, note that different c must give rise to different quadruples, since a and b are
fixed with x, and hence c can be recovered from the quadruple. There are � |X|
many choices for c, and each c gives rise to � K−4 |A|2 many different quadruples,

whence there are � K−4 |A|2 |X| many quadruples in total, as required. �

3. Covering lemmas

Definition 2 (Covering). A set A is K-covered by B if there is a set X
with |X| ≤ K such that A ⊂ X + B – that is, A is contained in the union
of at most K translates of B.

This is a weak, but very useful notion of structure, which we have already seen
informally. For example, if A is K-covered by another set B of comparable size,
so |A| � |B|, and B has small doubling |B +B| � |B|, then A also has small
doubling, since

|A+A| ≤ |X +B +X +B| ≤ K2 |B +B| �K |B| .
Covering is a more refined structural property than doubling constant, however,
and one can often get a lot more out of it. For example, if we can efficiently cover
a sumset A + B by A itself then we can immediately control the iterated sumsets
as well, since if A + B ⊂ A + X then A + nB ⊂ A + nX, by induction on n. We
will see a demonstration of this idea in practice shortly.

First, however, we need to show how to produce an efficient covering in the first
place! The first idea, due to Ruzsa, has a remarkably simple proof, but already this
form of covering suffices for many applications.

Lemma 9 (Ruzsa covering lemma). If |A+B| ≤ K |B| then A is K-covered by
B −B. That is, there is a set X ⊂ A such that |X| ≤ K and A ⊂ X +B −B.

Proof. Let X ⊂ A be maximal such that the translates ∪x∈X(t+B) are all disjoint.
Note that some such X certainly exists, since any singleton member of A satisfies
this requirement. Furthermore,

|X| |B| = |X +B| ≤ |A+B| ≤ K |B| ,

4Note that we are not using many such a, b ∈ A′ with x = a− b, just fixing one such pair – the
multiplicity in this proof comes from the popularity of a and b, not in the popularity of x itself!
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and hence |X| ≤ K. Finally, if x ∈ X then certainly x ∈ X + B − B, and if
x ∈ A\X then, by maximality of X, there exists some b1, b2 ∈ B and y ∈ X such
that x+ b1 = y + b2, and so x = y + b2 − b1 ∈ X +B −B. �

Note that we are covering A by B−B rather than B itself. Intuitively, the differ-
ence set B−B is much ‘smoother’ than B itself, and enjoys much richer structure.
A classic picture to have in mind is a random large subset of a group, say B ⊂ G
with |B| ≈ 3

4 |G|. The randomness of B is an obstacle to many desirable structural
properties (for example, one cannot cover G itself using only a few translates of B),
but it is easy to show5 that B − B = G, which is as structured as one could hope
for! The difference set operation has smoothed out the set, and filled in the gaps.

Before giving more elaborate types of covering lemmas, we present a striking
application of Ruzsa’s covering lemma and the other elementary tools proven thus
far to establish our first non-trivial inverse sumset result. For this we must specialise
our group G to be a group of small torsion, which for the sake of concreteness, we
will assume is of the form Fnp , for some fixed prime p.

As we saw earlier, if A is a subset of a coset of a subgroup H, with |A| ≥ K−1 |H|,
then |A+A| ≤ K |A|. In particular, if A is a large subset of a coset of a subgroup,
then A must have small doubling. We will now show that this is the only way that
a set can have small doubling.

Unfortunately, our proof only works in groups of small torsion. This is a demon-
stration of what was alluded to earlier, that additive combinatorics in groups such
as Fnp tends to be much easier than the general case.

Theorem 1 (Freiman-Ruzsa inverse theorem for bounded torsion). If A ⊂ Fnp is
such that |A+A| ≤ K |A| then A is contained in a coset of some subgroup H such
that |A| �p,K |H|.

Roughly speaking, the idea is that if we just take all the additive span of A, then
this itself generates some finite group which clearly contains A (assuming 0 ∈ A).
The difficulty is in obtaining a suitable upper bound for the size of this group –
trivially all we can say is that |H| ≤ p|A|. We need to use the small doubling
hypothesis to improve this to |H| � |A|.

Proof. Without loss of generality, we may suppose that 0 ∈ A, since both hypothesis
and conclusion are invariant under translation. The obvious way to apply Ruzsa’s
covering lemma is to cover A by translates of A−A, but this does not lead anywhere
useful – obviously A is covered by a single translate of A−A anyway, without any
small doubling assumption!

Instead of covering A by A − A, we will cover 2A − A – this is non-trivial, and
much more powerful, since A − A is a ‘simpler’ set than 2A − A. We first use
Plünnecke’s inequality to see that

|(2A−A) +A| = |3A−A| ≤ K4 |A| .

We may now apply Ruzsa’s covering lemma to find some X ⊂ 2A − A such that
|X| ≤ K4 and

2A−A ⊂ X +A−A.

5Indeed, any subset A ⊂ G of size |A| > 1
2
|G| has A− A = G, since for any x ∈ G the sets A

and x + A must intersect.
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That is, A+ (A−A) ⊂ X +A−A. But then also

A+A+ (A−A) ⊂ A+X +A−A = X + 2A−A ⊂ 2X +A−A,

and so on. In general, by induction, for any n ≥ 1, we have nA + (A − A) ⊂
nX +A−A.

Let H be the subgroup generated by A and H0 be the subgroup generated by
X. If h ∈ H then h ∈ nA for some n ≥ 1. Since

nA ⊂ nA+ (A−A) ⊂ nX +A−A ⊂ H0 +A−A

for all n ≥ 1, we have H ⊂ H0 +A−A. We may now bound the size of H by

|H| ≤ |H0| |A−A| .

We can easily bound both of these factors: |H0| �p,K 1, since it is generated by
OK(1) many elements in a group with torsion p, and by the Ruzsa triangle inequality
(or Plünnecke’s inequality) we have |A−A| ≤ K2 |A|. Hence |H| �p,K |A| as
required. �

Note the essential use of bounded torsion here, in bounding the size of H0 – if
we were to try the same proof for subsets of Z or Z/NZ then we’d get nowhere,
since even if X is small the group generated by X could be very large!

If one tracks the dependency of the constants on p and K, then one gets |H| ≤
K2pK

4 |A|. This dependency has been improved (as we will explore in Chapter
4), and now an upper bound of pO(K), is known, which is essentially optimal. For
example, suppose we take A to be K linearly independent basis vectors in Fnp . Then

trivially |A+A| ≤ |A|2 = K |A|, and the smallest coset which contains all of A has
size pK .

In part the reason for this exponential dependence on K is that we are insisting
that all of A is contained in the same coset of H. Using the covering terminology,
we might say that A has to be 1-covered by H. If we relax this slightly, and allow
instead for A to be just efficiently covered by H, then we expect to be able to do
much better, with polynomial bounds instead of exponential. (For example, note
that in the linearly independent example above, A is trivially K-covered by the
trivial subgroup.)

Conjecture 1 (Marton’s conjecture). If A ⊂ Fnp is such that |A+A| ≤ K |A| then

A is Op(K
Op(1))-covered by a subgroup H with |H| ≤ |A|.

This immediately implies the following, by the pigeonhole principle.

Conjecture 2 (Polynomial Freiman-Ruzsa conjecture for Fnp ). If A ⊂ Fnp is such

that |A+A| ≤ K |A| then there is a coset of a subgroup H with |H| �p K
Op(1) |A|

such that |A ∩H| �p K
−Op(1) |A|.

A similar result is conjectured for any abelian groups, even subsets of Z, provided
one replaces subgroups by (generalised) arithmetic progressions, and in general is
known as the Polynomial Freiman-Ruzsa Conjecture. We will return to this topic
in Chapter 4.

For some applications, we don’t necessarily need the set of covering translates
X to be small in size, as long as it is spanned by a small number of elements (i.e.
small in complexity). This suggests the following definition.
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Definition 3 (Span covering). A set A is K-span covered by B if there is a
multiset X (i.e. a set where an element may occur more than once) of size
|X| ≤ K such that A ⊂ Span(X) +B, where

Span(X) =

{∑
x∈X

cxx : cx ∈ {−1, 0, 1}

}
.

The following lemma is similar to Ruzsa’s covering lemma, but for span covering.
The main point is that the dependence on |A+B| / |B| is now only logarithmic,
provided |A+A| / |A| is small. Note that this result does not imply a stronger
result for the previous notion of covering, since the size of Span(X) itself may be
exponential in |X|, but we have obtained much information about what the set of
covering translates looks like.

Lemma 10. Suppose |A+A| ≤ K |A| and |A+B| ≤ K ′ |B|. Then A is O(K log(KK ′))-
span covered by B −B.

Proof. Instead of producing some X by a single greedy construction, as in the proof
of Ruzsa’s covering lemma, we will use a more subtle iterative construction.

We will construct a sequence of sets B0, B1, B2, . . . as follows. Let B0 = B.
Suppose that Bn is given, for some n ≥ 0. There are two cases:

(1) If there are 2K many disjoint translates a + Bn with a ∈ A, then we let
Bn+1 be the union of these translates, so that Bn+1 = A′n + Bn for some
A′n ⊂ A of size |A′n| = 2K, and |Bn+1| = 2K |Bn|.

(2) Otherwise, if it is not possible to choose 2K such translates, then we choose
some maximal set A′ ⊂ A such that the translates a+Bn are disjoint, and
let Bn+1 = A′ +Bn.

We will first argue that this process terminates eventually. Note that, by induction,
we must have Bn ⊂ B + nA for all n ≥ 0, and so

(2K)n |B| = |Bn| ≤ |B + nA| .

By Ruzsa’s triangle inequality and Plünnecke’s inequality, we have

|B + nA| ≤ |B +A| |nA−A|
|A|

≤ K ′Kn+1 |B| .

Comparing these lower and upper bounds, we have

(2K)n ≤ K ′Kn+1

and so 2n ≤ K ′K, or n� log(K ′K). Therefore this constructive process must halt
at some n� log(K ′K).

We now claim that if this process halts at the construction of Bn+1, then the
span of X = A0 ∪ · · · ∪ An (viewed as a multiset, so that some a ∈ X may occur
more than once) is a suitable set of covering translates, and we are done, since

|X| =
n∑
i=0

|Ai| ≤ (n+ 1)2K � K log(K ′K).

Suppose that a ∈ A. We know that a + Bn is not disjoint from Bn+1, by
maximality of the set of translates in our choice of Bn+1. Therefore a ∈ Bn+1−Bn.
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But we know what each of these sets are: by induction

Bn = An−1 + · · ·+A0 +B

and
Bn+1 = An + · · ·+A0 +B.

Therefore

A ⊂ Bn −Bn−1

= B −B + (A0 −A0) + · · ·+ (An−1 −An−1) +An

⊂ B −B + Span(A0 ∪ · · · ∪An)

as required. �



Finding arithmetic progressions

Thus far we have discussed mainly ‘global’ problems – given a set A, what kind
of structure does it have, and how do the different measures of structure relate.

Another rich area of problems comes from looking at ‘local’ problems – what kind
of smaller structures must A contain? In particular, we have one of the guiding
meta-questions of additive combinatorics:

What kind of conditions on a set of integers guarantee the presence of an arith-
metic progression?

To avoid confusion, a k-term arithmetic progression is a set of the shape {a, a+
d, a+ 2d, . . . , a+ (k − 1)d} and we say that it is non-trivial if d 6= 0.

Theorem 2 (van der Waerden). For any r, k ≥ 1, if the integers are coloured in
r colours then there is some monochromatic non-trivial k-term arithmetic progres-
sion.

This theorem is proved, using purely combinatorial methods, in Imre Leader’s
Part III course on Ramsey Theory. This was first conjectured (in the case of 2
colours) by Baudet in the early 1920s, and it floated around conferences for a
while, before it reached the ears of van der Waerden. In 1926, in a conversation
after lunch, he, Emil Artin, and Otto Schreier, worked out the essentials of the
proof, which van der Waerden put together and published.

After this, it is reasonable to wonder exactly what kind of conditions on a colour
class suffice. Since, by the pigeonhole principle, there must exist some colour con-
taining at least 1/r proportion of the integers, one might ask whether this ‘large’
colour class must contain long arithmetic progressions? More generally, if we have
any positive density subset of the integers, must it contain arbitrarily long arith-
metic progressions?

This conjecture was made informally since at least the 1930s, but it was not until
1975 that a full proof was found by Szemerédi. We state the result in the following
finitary form.

Theorem 3 (Szemerédi’s theorem). For any δ > 0 and k ≥ 1 there exists N �δ,k 1
such that if A ⊂ {1, . . . , N} has size |A| ≥ δN then A contains a non-trivial k-term
arithmetic progression.

This is one of the great achievements of 20th centry combinatorics. The original
proof by Szemerédi was very combinatorial, but since then a number of alternative
proofs have been found. The most effective method so far is that of Gowers. To state
it most clearly, let rk(N) denote the largest subset of {1, . . . , N} with no non-trivial
k-term arithmetic progressions. Using this language, we can state Szemerédi’s
theorem as rk(N)/N → 0 as N → ∞. Gowers’ method gives an explicit rate of
decay of this function, which remains the best known for general k.

18
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Theorem 4 (Gowers).

rk(N)� N

(log logN)ck
,

where ck > 0 is some constant depending only on k.

Unfortunately we will not have time to prove Szemerédi’s theorem or give a
proper account of the method of Gowers (which will, however, be discussed in Julia
Wolf’s non-examinable course ‘Higher-order uniformity and applications’ in Easter
term).

In this course we will focus on the easiest non-trivial case of k = 3. We will omit
the subscript, so r(N) denotes the size of the largest subset of {1, . . . , N} which
contains no non-trivial three-term arithmetic progressions.

This special case of Szemerédi’s theorem was proved earlier, by Roth in 1953.

Theorem 5 (Roth 1953). For any δ > 0 there exists N �δ 1 such that if
A ⊂ {1, . . . , N} has |A| ≥ δN then A contains a non-trivial three-term arithmetic
progression.

Equivalently, r(N)/N → 0. In fact Roth proved the explicit estimate

r(N)� N

log logN
.

The proof of Roth used Fourier analysis, which will be the topic of the next
chapter. At the end of the next chapter we will use the tools we will develop to
prove the following quantitative improvement of Roth’s theorem.

Theorem 6 (Bourgain 1999).

r(N)�
(

log logN

logN

)1/2

N.



CHAPTER 2

Fourier analysis

In this chapter we will develop the Fourier analysis we require. We will keep
things simple by only discussing finite abelian groups in this chapter.

4. Basic concepts

For any finite abelian group G, we can consider its dual group Ĝ of characters,
which are homomorphisms γ : G → C. The set of characters can be made into
a group, with the group operation given by pointwise multiplication, so that (γ ·
λ)(x) = γ(x)λ(x). We will use 1 to denote the trivial character, the identity of Ĝ.

Since multiplication in C is commutative, it is immediate that Ĝ is abelian.

Furthermore, if γ ∈ Ĝ then, since γ is a homomorphism, we must have γ(1) = 1,
and furthermore γ(x) must be a |G|th root of unity, for any x ∈ G. In particular,

Ĝ is finite.
Thus it is trivial that Ĝ is also a finite abelian group. What is less trivial, is

that in fact Ĝ is isomorphic to G itself.
We will always use lower-case Greek letters to denote characters, and will use

additive notation for the group operation in both G and Ĝ.

Lemma 11. If G is a finite abelian group then Ĝ is isomorphic to G. (In particular
it is also a finite abelian group, and is of the same order.)

This is straightforward to prove once one has the classification of finite abelian
groups (note that it is immediate for cyclic groups, and all finite abelian groups are
the direct product of cyclic groups), but we will not take that digression here, and
simply state it without proof.

We will often identify elements of G and Ĝ under this isomorphism. This iden-
tification is straightforward for our G of special interest. For example, if G = Fnp ,
then for any γ ∈ Fnp we have an associated character

γ(x) := e(γ · x/p),
with e(x) = e2πix. Similarly, if G = Z/NZ, any γ ∈ Z/NZ yields a character by

γ(x) = e(γx/N)

(where we think of γ and x as integers in {1, . . . , N}, for example).
We will adopt the convention that when talking about G we will use the ‘counting

measure’, i.e. unnormalised sums. When dealing with Ĝ, we will use the ‘probabil-
ity measure’, which is just a sum but normalised by dividing through by the size
of the group. (There are good philosophical reasons for this: it is known that the
dual operation turns discrete groups (which naturally have the counting measure)
into compact groups (which naturally have a probability measure), and vice versa.
As G is finite, it is both compact and discrete, so one could use either the counting

20



ADDITIVE COMBINATORICS 21

or probability measure, and both are defensible positions. If we decide to prioritise

that G is discrete, in using the counting measure, then it is natural to view Ĝ as a
compact group above all else, hence the probability measure.)

Thus the natural inner product for functions on G is

〈f, g〉 =
∑
x∈G

f(x)g(x).

For example, the additive energy can be written as

E(A) =
∑
x

1A ∗ 1A(x)2 = 〈1A ∗ 1A, 1A ∗ 1A〉.

When dealing with Ĝ it is convenient to introduce new notation that hides the
normalising factor – convention in this area is to use expectation notation. In this
context it has nothing to do with probability, but is defined as

E
γ∈Ĝ

f(γ) =
1

|G|
∑
γ∈Ĝ

f(γ).

Use of the expectation notation is widespread in additive combinatorics, and is a
very convenient way of sweeping normalising factors under the rug. In general, one
should just view it as a sum, and check at the end that the normalising factors of
1/ |G| go where they should.

The key identities which are at the heart of Fourier analysis are the orthogonality
relationships:

Lemma 12 (Orthogonality). For any γ ∈ Ĝ,

∑
x∈G

γ(x) =

{
|G| if γ = 1 and

0 otherwise.

Similarly, for any x ∈ G,

E
γ∈Ĝ

γ(x) =

{
1 if x = 0 and

0 otherwise.

Proof. The first equality in both claims is trivial, since 1(x) = 1 for all x ∈ G, and

γ(0) = 1 for all γ ∈ Ĝ. For the other equality in the first claim, let γ 6= 1, so that
there exists some y ∈ G such that γ(y) 6= 0. Since G+ y = G, we have

γ(y)
∑
x∈G

γ(x) =
∑
x∈G

γ(x+ y) =
∑
z∈G

γ(z).

Since γ(y) 6= 0 the only way this is possible is if
∑
x∈G γ(x) = 0. The second

claim is proved similarly, using the existence of some λ ∈ Ĝ such that λ(x) 6= 1.

Such a λ exists, for otherwise Ĝ would act trivially on the group generated by
x, and hence would also be the dual group for G/〈x〉, but we know this has size

|G/〈x〉| < |G| = |Ĝ|. �
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Definition 4. For any f : G → C we define the Fourier transform of f to

be the function f̂ : Ĝ→ C defined by

f̂(γ) = 〈f, γ〉 =
∑
x∈G

f(x)γ(x) =
∑
x

f(x)γ(−x).

Lemma 13 (Parseval’s identity). For any f, g : G→ C,

〈f, g〉 = 〈f̂ , ĝ〉.

In particular, ‖f‖2 = ‖f̂‖2 for any function f : G→ C.

Proof. This is simply writing out the definitions and rearranging (remember all
sums are finite, so no delicate analytical issues arise), and using orthogonality:

〈f, g〉 =
∑
x∈G

f(x)g(x)

=
∑
x,y∈G

f(x)g(y)E
γ∈Ĝ

γ(y − x)

= E
γ∈Ĝ

(∑
x∈G

f(x)γ(−x)

)∑
y∈G

g(y)γ(−y)


= 〈f̂ , ĝ〉.

�

Lemma 14 (Diagonalising convolution). For any f, g : G→ C,

f̂ ∗ g = f̂ · ĝ

and

f̂ ◦ g = f̂ · ĝ.

Proof. By definition, for any γ ∈ Ĝ,

f̂ ∗ g(γ) =
∑
x,y∈G

f(x)g(y)γ(x+ y).

Since γ(x + y) = γ(x)γ(y) this sum factorises and we’re done. The other claim is
proved in a similar fashion:

f̂ ◦ g(γ) =
∑
x,y∈G

f(x)g(y)γ(x− y) =

(∑
x∈G

f(x)γ(x)

)∑
y∈G

g(y)γ(y)

 .

�

In particular, for example, if A ⊂ G then

̂1A ◦ 1A = |1̂A|2,

and so the Fourier transform of 1A ◦ 1A is always a non-negative real number. This
is much more convenient that the Fourier transform of 1A ∗ 1A, which may take
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complex values. This is one reason why it is often more convenient to work with ◦
than ∗.

Finally, we remark that the Fourier transform is invertible, in the following sense.

Lemma 15. For any f : G→ C and any x ∈ G,

f(x) =E
γ

f̂(γ)γ(x).

The proof is a simple exercise in orthogonality (or follows directly from Parseval’s
identity).

5. Roth’s theorem in Fnp
Our final goal in this chapter will be to prove an upper bound for the size of

the largest A ⊂ Z/NZ without 3APs. In this section we will prove a similar upper
bound for the size of subsets of Fnp without 3APs. This setting is much simpler,
and it is much easier to see what’s going on. Our subsequent proof for the case
of A ⊂ Z/NZ will be essentially translating this proof and seeing what needs to
change when we change Fnp to Z/NZ.

Fix some odd prime p ≥ 3. (This is needed in the proof, basically because a 3AP
is degenerate in the case p = 2 – the progression x, x+ d, x+ 2d is just x, x+ d, x,
which always exists provided |A| ≥ 2.)

Before the proof, we’ll give a big picture sketch. We are given a set A ⊂ Fnp , and
all we know about it is its size – or, equivalently, its density α = |A| /pn. We want
to know that, provided α is large, and with no other information about A at all,
that A contains a 3AP. We make two observations:

(1) If A is very structured, e.g. if A is a subspace, then A contains many 3APs,
since if x, x + d ∈ A are any two distinct elements, then d ∈ A, and hence
x+ 2d ∈ A also.

(2) On the other hand, if A is a random subset of density α, then the expected
number of 3APs is α3p2n. This includes the trivial 3APs (with d = 0),
but there are only |A| = αpn of such. So provided α3p2n � αpn, i.e.
α� p−n/2, this count is negligible, and we’re done.

So we’re done, in the case α large, if A is either very structured or very random. This
certainly supports our belief that it should hold for all A (viewing structure/random
as two opposing extremes).

But how to turn this into a proof? Core idea is ’density increment’, goes back
to Roth 1953. What Tao calls the ‘randomness vs. structure’ dichotomy. Suppose
A ⊂ Fnp has no 3APs. We want to show α = |A| /pn is small. Either:

(1) A has � α3p2n many 3APs (the ’random’ case), and hence
(a) A is very small, α� p−n/2, and done, or
(b) A has non-trivial 3APs, contradiction,

or,
(2) A must be structured in the following weak sense: it is not well-distributed

across different cosets. In particular, there is a large (coset of a ) subspace
W ≤ Fnp on which the density of A is large.

But then we zoom in on A intersect this coset. Translate the coset so that it’s also
a subspace. There are still no 3APs, since 3APs are translation invariant. So we
now have a large subset of W without 3APs. Do it all over again! We can’t carry
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on in the second case forever, since the density can never go past 1. So at some
point exit in the very small case.

In this section we’ll make the above sketch rigorous. Fourier analysis will be
essential in the structured case, and we will use it to find the subspace on which A
has increased density.

Our goal is to prove the following estimate.

Theorem 7 (Meshulam). If A ⊂ Fnp has no non-trivial three-term arithmetic pro-
gressions then

|A| �p
pn

n
.

(In particular, |A| /pn → 0 as n→∞.)

(Note that, writing N = pn for the size of the group, this upper bound looks
like |A| � N/ logN , which is better than Bourgain’s upper bound of |A| �
N/(logN)1/2+o(1) – but Bourgain’s bound works for the harder setting of Z/NZ!)

Our main tool is the following lemma, which says that if A has no 3APs then
either A is small, or there is a large density increment.

Lemma 16. Let V be an n-dimensional vector space over Fp, and let A ⊂ V
be a subset of density α = |A| /pn. Suppose that A has no non-trivial three-term
arithmetic progressions. Then either

(1) |A| ≤ (2pn)1/2, or
(2) there is a subspace V ′ ≤ V of codimension 1 and x ∈ V such that

|(A− x) ∩ V ′|
|V ′|

≥ (1 + 1
4α)α.

Before proving this, we will show how to use it iteratively in a density increment
fashion to prove Meshulam’s theorem. There are various different ways to phrase
this. We find using the language of maximality the most straightforward.

Proof of Theorem 7. Let A ⊂ Fnp be a fixed set of density α > 0 without non-trivial

3APs. Our goal is to show that α� pn/n. If α ≤ p−n/4 then we’re done, so suppose
that α > p−n/4. Also, note that it suffices to prove the bound for large n, since for
small n we can just use the trivial |A| ≤ pn and change the hidden constant in �p

accordingly.
Let k ≥ 0 be maximal such that the following holds. There is a sequence of sets

A0, . . . , Ak and associated vector spaces V0, . . . , Vk such that

(1) A0 = A and V0 = Fnp ,
(2) Ai ⊂ Vi,
(3) Ai has no non-trivial three-term arithmetic progressions,
(4) if αi = |Ai| / |Vi| then

αi+1 ≥ (1 + αi/4)αi,

(5) |Vi+1| ≥ |Vi| /p.
How large can k be? Well, simple induction shows that

αi ≥ (1 + α/4)iα ≥ (1 + iα/4)α.
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In particular, after d4/αe many steps, αi ≥ 2α. After another d4/2αe many steps,
αi ≥ 4α, and so on. In the end, after

r∑
i=0

d4/2iαe

many steps, the density is ≥ 2rα – but since trivially the density is ≤ 1, this forces
r � log(1/α). So

k ≤
O(log(1/α))∑

i=0

d4/2iαe �
∞∑
i=0

(4/2iα) +O(log(1/α))� α−1.

In particular, we can assume that k ≤ n/10, or else α−1 � n, and so α � 1/n as
required.

Now let’s see what Lemma 16 tells us, applied to Ak ⊂ Vk. By maximality of
k, the second condition of Lemma 16 can’t hold: otherwise we could let Vk+1 = V ′

and Ak+1 = A− x. Therefore the first condition must hold, and so

|Ak| = αk |Vk| � |Vk|1/2 .
Hence

p−n/4 ≤ α ≤ αk � |Vk|−1/2
.

But by induction |Vk| ≥ pn−k ≥ p9n/10, and hence

p−n/4 � p−9n/20,

which is a contradiction for large enough n. �

To complete the proof of Meshulam’s theorem, or Roth’s theorem in Fnp , it re-
mains to prove Lemma 16. The strategy is the following:

(1) Write the difference between the actual number of 3APs in A and the
‘expected’ number of 3APs in a set of the same density as an inner product
involving 1A and the balanced function 1A − α.

(2) If A has no non-trivial 3APs, and is not too large, then this difference is
large in absolute value.

(3) Apply Parseval’s identity, to convert this inner product into one involving
the Fourier transform of 1A and 1A − α.

(4) Deduce from the largeness of this inner product that there is some γ 6= 1
at which the Fourier transform of 1A − α is large.

(5) Show that if V ′ is the subspace which is orthogonal to γ, which has codi-
mension 1, then the large Fourier coefficient from the previous point creates
a density increment on some coset of V ′.

Proof of Lemma 16. We will think of V as just Fnp , and all Fourier transforms,
sums, and so on, will be taken over this group. We first note that (in any group)
3APs are exactly those sets {x, y, z} which are solutions to the linear equation
x + y = 2z. Indeed, given a 3AP x, x + d, x + 2d, we see that letting y = x + 2d
and z = x+ d, we have a solution to this equation:

x+ (x+ 2d) = 2(x+ d).

On the other hand, if x + y = 2z, then letting d = z − x, the equation forces
y = x + 2d and z = x + d, and so {x, y, z} = {x, x + d, x + 2d}. In this language,
the trivial 3APs with d = 0 are those trivial solutions where x = y = z.
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This means that the number of 3APs in A can be written as∑
x,y,z∈A

1x+y=2z =
∑
x,y∈A

∑
w∈2·A

1x+y=w =
∑
w∈2·A

1A ∗ 1A(w) = 〈1A ∗ 1A, 12·A〉.

Here we are using the obvious notation 2 ·A = {2a : a ∈ A} – note that since Fnp is
a group of odd order g 7→ 2g is a bijection, and in particular |2 ·A| = |A|.

We will now compare this to the amount of 3APs we ‘expect’ to see in A. The
most convenient way to do this is to consider the same inner product with 1A
replaced by α1G – that is, the constant function on Fnp which maps every element
to α. This can be viewed as the first-order approximation to A, which agrees with
it in density, in the sense that

∑
x 1A(x) = |A| = αpn =

∑
x α1G(x). As a constant

function on the entirety of G, it is much easier to count 3APs weighted by this
function, even if we only replace one copy of 1A by α1G:

〈α1G ∗ 1A, 12·A〉 = α〈1G ∗ 1A, 12·A〉
= α〈1G, 12·A ◦ 1A〉

= α
∑
x∈G

 ∑
a,b∈A

12a−b=x


= α |A|2

= α3p2n.

This is, recall, the number of 3APs we expect from A if it were a random set of
density α. To compare the difference between the actual count and the expected
count, we take the difference: let fA = 1A−α1G be the ‘balanced function’. Then,
using the fact that the number of 3APs in A is just |A| (since only the trivial ones
with d = 0 appear), we have

〈fA ∗ 1A, 12·A〉 = 〈1A ∗ 1A, 12·A〉 − 〈α1G ∗ 1A, 12·A〉 = |A| − α3p2n = αpn(1− α2N).

In particular, if the first case does not hold, then 1− α2N ≤ − 1
2α

2pn, and so

|〈fA ∗ 1A, 12·A〉| ≥ 1
2α

3p2n.

We now write the left-hand side using Fourier analysis: Parseval’s idenity and the
fact that the Fourier transform diagonalises convolution yields

〈fA ∗ 1A, 12·A〉 = 〈f̂A · 1̂A, 1̂2·A〉.

Writing out the definition of the inner product and using the triangle inequality,
we therefore get

(2) E
γ

∣∣∣f̂A(γ)
∣∣∣ ∣∣∣1̂A(γ)

∣∣∣ ∣∣∣1̂2·A(γ)
∣∣∣ ≥ 1

2α
3p2n.

We now make two observations about the left-hand side: the first is that the trivial
character γ = 1 makes no contribution, since

f̂A(1) =
∑
x

fA(x) =
∑
x

1A(x)− α1G(x) = |A| − αpn = 0.
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Secondly, we use the Cauchy-Schwarz inequality and Parseval’s identity to see that

E
γ

∣∣∣1̂A(γ)
∣∣∣ ∣∣∣1̂2·A(γ)

∣∣∣ ≤ (E
γ

∣∣∣1̂A(γ)
∣∣∣2)1/2(

E
γ

∣∣∣1̂2·A(γ)
∣∣∣2)1/2

= ‖1A‖2‖12·A‖2

= |A| .

Using this and (2) we have

sup
γ 6=1

∣∣∣f̂A(γ)
∣∣∣αpn ≥ sup

γ 6=1

∣∣∣f̂A(γ)
∣∣∣E
γ

∣∣∣1̂A(γ)
∣∣∣ ∣∣∣1̂2·A(γ)

∣∣∣
≥E
γ 6=1

∣∣∣f̂A(γ)
∣∣∣ ∣∣∣1̂A(γ)

∣∣∣ ∣∣∣1̂2·A(γ)
∣∣∣

≥ 1
2α

3p2n.

In particular, there must exist some γ 6= 1 such that |f̂A(γ)| ≥ 1
2α

2pn. (Compare

this to the trivial upper bound |f̂A(γ)| ≤ 2αpn from the triangle inequality.)
Let V ′ be the subspace which annihilates γ – that is, the set of all x ∈ Fnp

such that γ · x = 0 (recalling our identification of Fnp with F̂np , this is equivalent to
γ(x) = 1 viewing γ as a character). This is a subspace of codimension 1. The key
observation is that γ (viewed as a character) is now constant on cosets of V ′ – if
the cosets of V ′ are v1 + V ′, . . . , vp + V ′ and if x ∈ vi + V ′ then γ(x) = γ(vi).

We know that |f̂A(γ)| ≥ α2pn/2. To see what this has to do with V ′, we write
out the Fourier transform as follows. Let V ′1 , . . . , V

′
p be the cosets of V ′. Then

f̂A(γ) =
∑
x∈A

(1A(x)− α1G(x))γ(x)

=

p∑
i=1

∑
x∈V ′i

(1A(x)− α1G(x))γ(x)


=

p∑
i=1

γ(vi)
(
|A ∩ V ′i | − αpn−1

)
.

We want to show that there exists some i such that |A ∩ V ′i | − αpn−1 ≥ 1
4α

2pn−1.

One immediate problem is that we only know about the absolute value of f̂A(γ).
The second is that the sum above is a sum of complex values, so extracting infor-
mation about individual summands from a bound on the sum is difficult. We will
now show how to get around such difficulties.

Let c ∈ C be such that cf̂A(γ) = |f̂A(γ)| (so |c| = 1), and consider

〈fA, cγ + 1〉 = cf̂A(γ) +
∑
x

fA(x) =
∣∣∣f̂A(γ)

∣∣∣ .
In particular, this inner product is a non-negative real number. The function x 7→
cγ(x)+1 is constant on cosets of V ′ - say, takes the values x1, . . . , xp. So if we split
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the inner product into a sum over V ′i for 1 ≤ i ≤ p as above, then

〈fA, cγ + 1〉 =
∑
i

xi
(
|A ∩ V ′i | − αpn−1

)
.

Since the left-hand side is a non-negative real value, and is ≥ 1
2α

2pn, we have∑
i

Re(xi)
(
|A ∩ V ′i | − αpn−1

)
≥ 1

2α
2pn.

By averaging (which is now possible since this is a sum of real numbers), there
exists i such that

Re(xi)(|A ∩ V ′i | − αpn−1) ≥ 1
2αp

n−1.

Finally, we note that Re(xi) ∈ [0, 2], and so we’re done. (Note how vital it was that
we introduced the +1, or else Re(xi) ∈ [−1, 1], and we might have found a density
decrement instead of an increment.) �

A lot of the above argument makes sense in any finite abelian group, such as
Z/NZ. Where we made essential use of the fact that we’re working in Fnp was saying
that there is a subspace V ′, which is large, on which γ(x) = 1. This is the utility of
having plentiful subspaces around, which can exactly annihilate any character. In
Z/NZ, this is no longer possible – for example, if γ : x 7→ e2πix/N , then γ(x) = 1 if
and only if x = 0. So we cannot hope to find a large subgroup on which γ vanishes
exactly.

We will instead pass to the subset of those x where γ(x) ≈ 1 – that is, where
|γ(x)− 1| ≤ ε for some small ε > 0. With this choice, for suitable ε, something
similar to the previous argument can be made to work for Z/NZ – but the details
become more complicated, since these sets are no longer closed under addition.

6. Bohr sets

In this section we will define Bohr sets, which are a generalisation of subspaces
that exist for any finite abelian group, and explore their properties. In this section
G is an arbitrary finite abelian group, of order N .

Definition 5 (Bohr set). Let Γ ⊂ Ĝ and ρ ∈ [0, 2]. The Bohr set with
frequency set Γ and width ρ is the set

Bohr(Γ; ρ) = {x ∈ G : |1− γ(x)| ≤ ρ for all γ ∈ Γ}.
If λ > 0 and B = Bohr(Γ; ρ) is a Bohr set then we will write Bλ for
Bohr(Γ;λρ), which we call B dilated by λ. The size of Γ is called the
rank of the Bohr set.

Important: The frequency set Γ and width ρ is not uniquely determined
by the corresponding Bohr set! (For example, Bohr(Γ; 2) = G for any Γ.)
Formally, it would be most proper to always talk of triples (Bohr(Γ; ρ),Γ, ρ),
but this notation is very cumbersome. Thus we adopt the convention that
whenever we refer to a ‘Bohr set’ B, we are also implicitly fixing some Γ
and ρ such that B = Bohr(Γ; ρ).

Before giving some examples, we note some basic properties.
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(1) A Bohr set B is always a symmetric set (i.e. B = −B) which contains 0.

Indeed, this is immediate from the fact that γ(−x) = γ(x) and γ(0) = 1

for any γ ∈ Ĝ.
(2) Bohr sets are decreasing in frequency sets, in that if Γ ⊇ Γ′ then Bohr(Γ; ρ) ⊆

Bohr(Γ′; ρ).
(3) Bohr sets are increasing in width, in that if ρ ≤ ρ′ then Bohr(Γ; ρ) ⊆

Bohr(Γ; ρ′).
(4)

Bohr(Γ; ρ1) + Bohr(Γ; ρ2) ⊆ Bohr(Γ; ρ1 + ρ2).

This follows from the triangle inequality, since

|1− γ(x1 + x2)| = |γ(−x1)− γ(x2)| ≤ |1− γ(x1)|+ |1− γ(x2)| .
In particular, B +Bλ ⊆ B1+λ.

One should think of the Bohr sets with fixed frequency set Γ as a family of
neighbourhoods of the origin – where we begin with Bohr(Γ; 0) and expand outwards
until eventually Bohr(Γ; 2) = G.

A Bohr set of rank d is the inverse image of a cube of dimension d: if we consider
the map from G→ Cd where x 7→ (γ(x))γ∈Γ then Bohr(Γ; ρ) is the inverse image of
the cube of side-length 2ρ centred at 1. This inverse map is not a homomorphism
or anything particularly well-behaved, but still this view of a Bohr set of rank d as
the pullback of a d-dimensional cube provides useful intuition.

Examples. Before giving some concrete examples, it is convenient to note the
following estimate. Recall that e(x) = e2πix. We note that if θ 6∈ Z then

|1− e(θ)| =
∣∣e−πiθ − eπiθ∣∣ = 2 |sin(πθ)| .

We now recall Jordan’s inequality:
2
π |x| ≤ |sin(x)| ≤ |x| ,

valid for any x ∈ (−π/2, π/2]. In particular, if ‖θ‖ denotes the distance of θ from
the nearest integer, then

4‖θ‖ ≤ |1− e(θ)| ≤ 2π‖θ‖.

For our first example, recall that if G = Fnp then the group of characters Ĝ
can be identified with Fnp itself, where γ ∈ Fnp is identified with the character
x 7→ e(γ ·x/p). In particular, if ρ < 4/p, then |1− γ(x)| ≤ ρ implies ‖γ ·x/p‖ < 1/p.
But γ · x ∈ {0, . . . , p− 1}, and so the only way this is possible is if γ · x = 0. That
is, provided ρ < 4/p, we have shown that, for any Γ ⊂ Fnp ,

Bohr(Γ; ρ) = {x ∈ Fnp : γ · x = 0 for all γ ∈ Γ}.
That is, the Bohr set with frequency set Γ is precisely the subspace of Fnp which
is orthogonal to all γ ∈ Γ. This is very convenient, and goes a long way towards
explaining why proofs over Fnp are much more straightforward: provided the width
is sufficiently small (less than some absolute constant depending only on p), Bohr
sets in Fnp are exactly subspaces (and vice versa). In particular they are closed
under addition.

The advantage of Bohr sets in general is that they offer an analogue for ‘sub-
spaces’, but they exist for any group, even those without subgroups. This is a good
general heuristic picture to have in mind when thinking about Bohr sets: “A Bohr
set of rank d plays the same role as a subspace of codimension ≤ d.”
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Let’s consider what Bohr sets look like in Z/NZ., when N is prime. Again, the
group of characters can be identified with Z/NZ itself, with γ ∈ {0, . . . , N − 1}
identified with the character x 7→ e(xγ/N). Consider first the case of rank 1. It
is easy to see that Bohr(Γ; ρ) is just an arithmetic progression, centred at 0, of
length ≈ ρN – for example, when Γ consists of the character γ : x 7→ e(x/N), then
|1− γ(x)| ≈ x/N , and so x ∈ Bohr(Γ; ρ) if and only if |x| � ρN . Changing to a
different just dilates this interval, which is another arithmetic progression of the
same length. Thus: “Bohr sets in Z/NZ of rank 1 are exactly those symmetric
arithmetic progressions containing 0.”

Bohr sets of higher rank are a little more mysterious, and to understand their
structure better we will need some tools from the geometry of numbers. We will
explore this further in Chapter 4.

We now return to Bohr sets in general, over an arbitrary finite abelian group.
The first basic question is: how large are Bohr sets? Heuristically, if γ(x) were
distributed equally over the unit circle, then |1− γ(x)| ≤ ρ would be true with
‘probability’ ≈ ρ. Assuming this event is independent for each γ ∈ Γ, we might
guess that the proportion of x ∈ G that belong to a given Bohr set B of rank d is
roughly ≈ ρd, and so |B| ≈ ρdN .

Note that this heuristic also agrees, up to a constant, with what we know about
Bohr sets in Fnp : if ρ < 4/p then B = Bohr(Γ; ρ) is the subspace of Fnp which

annihilates Γ, which has size p−d
′
N , where d′ ≤ |Γ| is the number of linearly

independent elements in Γ. In particular, if Γ is linearly independent and ρ ≈ 4/p,
then |B| = p−dN ≈ (ρ/4)dN .

Of course, this heuristic does not always work – for one thing, the distribution
of γ(x) will not be independent, especially if e.g. both γ and 2γ are elements of Γ
(which can already be seen in the Fnp subspace case, where d′ may be much smaller
than d). We can show, however, that this heuristic does work for providing a lower
bound on the size of B.

The same idea also shows that dilating a Bohr set at worst reduces the size of
the set by a factor exponential in d. This agrees with the heuristic that a Bohr set
of d behaves like a cube in dimension d.

Lemma 17. If B is a Bohr set of rank d and width ρ ∈ (0, 1] then

|B| ≥ (ρ/8)dN.

Furthermore, ∣∣B1/2

∣∣ ≥ 8−d |B| .
In particular, for any 0 < δ < 1, we have

|Bδ| ≥ (δ/2)3d |B| .
Proof. Let B = Bohr(Γ; ρ). We can cover the unit circle in C by at most d2π/ρe
many circles of radius ρ/2. In particular, G is covered by at most d2π/ρed many
sets of the shape

{x ∈ G : γ(x) ∈ Dγ for all γ ∈ Γ},
where each Dγ is a circle of radius ρ/2 (possibly different circles for different γ). If
X is any such set, then X −X ⊂ B by the triangle inequality: suppose that γ ∈ Γ
and x1, x2 ∈ X, say γ(x1) and γ(x2) are both in the circle with centre a and radius
ρ/2. Then

|1− γ(x1 − x2)| = |γ(x1)− γ(x2)| ≤ |a− γ(x1)|+ |a− γ(x2)| ≤ ρ.
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In particular, |X| ≤ |B|. It follows that

N ≤ d2π/ρed |B| ,

and the claim follows, since dxe ≤ x + 1 ≤ (1 + 1/2π)x for any x ≥ 2π, and
2π + 1 ≤ 8.

The second bound is proved similarly, except that now we cover just the part of
the unit circle which is distance ≤ ρ from 1. This is covered by at most 8 circles of
radius ρ/4, and hence B is covered by at most 8d many sets of the shape

X ′ = {x ∈ G : γ(x) ∈ Dγ for all γ ∈ Γ},

where eachDγ is a circle of radius ρ/4. As before, we have that each suchX ′ satisfies
X ′ −X ′ ⊂ B1/2, and so |X ′| ≤

∣∣B1/2

∣∣, and thus |B| ≤ 8d
∣∣B1/2

∣∣ as required.

To deduce the third bound, let k ≥ 1 be such that 2−k ≤ δ < 2−k+1. By k
applications of the second bound,

|Bδ| ≥
∣∣B1/2k

∣∣ ≥ 2−3kd |B| ≥ (δ/2)3d |B|

as required. �

Bohr sets are, in general, not even approximately group-like, and may grow expo-
nentially under addition. Indeed, recall that Bohr(Γ; ρ)+Bohr(Γ; ρ) ⊂ Bohr(Γ; 2ρ).
If this containment is sharp, and we expect a Bohr set of rank d and radius ρ to
have size ≈ ρdN , then this suggests that |B +B| ≈ 2d |B| – not so much a problem
for d = O(1), but as d→∞ this becomes very bad indeed!

Thus Bohr sets are, in general, not even approximately group-like. This quickly
leads to disaster when naively trying to do Fourier analysis. We can salvage some-
thing, however. Note that if B is a Bohr set of rank d then, for any λ > 0, the above
heuristic suggests that B + Bλ ≈ B1+λ ≈ (1 + λ)d |B|. In particular, if λ ≈ 1/d,
then this doubling constant becomes very small, on the order of 1 + o(1), much
more group-like!

The slogan here, then, is that a Bohr set B behaves like a group, and is ap-
proximately closed under addition, provided we only translate by elements in some
narrow dilate BO(1/d). (As a sanity check, see what happens in Fnp - as soon as
the width drops below some absolute constant then the Bohr set doesn’t change,
and so any dilate of B is B again, and this is just saying that subspaces are closed
under addition.)

Unfortunately, even this is not true in complete generality – basically because
the heuristic that |B| ≈ ρdN is not definitely true, and it may be that |B1+λ| is
much larger than we expect. Fortunately, this is not typical behaviour, and an
ingenious argument of Bourgain shows that every Bohr set is ‘close’ to one that
behaves how we’d expect. We first formally define what kind of behaviour we’re
after: a kind of continuity of size, in that small changes in the width should not
change the size too much.
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Definition 6 (Regularitya). A Bohr set B of rank d is regular if for all
0 ≤ δ ≤ 1/200d we have

|B1+δ| ≤ (1 + 200dδ) |B|
and

|B1−δ| ≥ (1− 200dδ) |B| .

aThe constant 200 here is fairly arbitrary – smaller constants also work, but the proofs

become messier. The point is that 200 is a fixed, absolute, constant.

For example, if B is regular, then in particular, for any 0 ≤ δ ≤ ε/200d, we have

|B +Bδ| ≤ |B1+δ| ≤ (1 + 200dδ) |B| ≤ (1 + ε) |B| .

Thus, as discussed above, regular Bohr sets have small sumset with their (narrow)
dilates.

Not all Bohr sets are regular! Here’s a simple example. Let Γ ⊂ Fn2 be some
linearly independent set of size d, and consider the Bohr set in Fn2 with frequency

set Γ and width 2 − 1
1000d . Since the characters in Ĝ only take the values ±1, if

|1− γ(x)| < 2 then γ(x) = 1, and so B is the subspace of characters orthogonal to Γ,
which has 2n−d. On the other hand, if δ = 1/200d, then since (1+δ)(2−1/200d) ≥ 2
we see that B1+δ = Fn2 , which has size 2n, and so |B1+δ| ≥ 2d |B|. A slight change
in the width has resulted in an exponential factor increase in the size. Similar
examples can be given for any Fnp and, with a little more work, for Z/NZ.

It’s clear what’s gone wrong here – we maliciously chose our initial width ρ to
be very close to some significant threshold, and then dilating it by a factor of 1 + δ
pushed us over this threshold, causing a massive jump in size. The key observation
is that this malicious choice can be undone if we’re allowed to tweak the initial
width slightly.

Bourgain showed that this is always true – every Bohr set can be turned into a
regular Bohr set by dilating the initial width. A slogan form of this result is that
“bad choices for the width are avoidable”.

Lemma 18 (Bourgain’s Regularity Lemma). For any Bohr set B there exists λ ∈
[ 1
2 , 1] such that Bλ is regular.

In the proof of Lemma 18, we will need the following charming elementary result.
(This lemma is probably folklore, but I first learnt of it from an expository note on
Bourgain’s result by Ben Green [5].)

Lemma 19. Let I be a collection of open intervals in R whose union contains a
closed interval of length λ. There is a finite collection I1, . . . , In ∈ I of disjoint
intervals with total length at least λ/2.

Proof. By compactness, there is a finite subset of intervals from I that contains
the same closed interval of length λ. Let I ′ be a minimal such set. Fix x ∈ R, and
suppose that there are at least two intervals in I ′ containing x. Let I = (aI , bI)
and J = (aJ , bJ) be two such intervals, chosen such that aI < x is minimal and
bJ > x is maximal. In particular, if (a, b) ∈ I also contains x, then a ≥ aI and
b ≤ bJ , and so (a, b) ⊂ I ∪ J . By the minimality of I ′, we deduce that (a, b) 6∈ I ′,
and so x is contained in at most two different intervals in I ′.
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If we list I as I1, . . . , In, where Ii = (ai, bi), ordered such that a1 ≤ a2 ≤ · · · ≤
an, then we must have

a1 ≤ a2 ≤ b1 ≤ a3 ≤ b2 ≤ a4 ≤ · · · ≤ bk−1 ≤ bk.

In particular the odd intervals I1 ∪ I3 ∪ · · · are all disjoint, and so are all the even
intervals I2 ∪ I4 ∪ · · · . By the pigeonhole principle at least one of them must have
measure at least λ/2. �

We now prove Bourgain’s regularity lemma. The basic idea is the following:
regularity roughly says that perturbing the width by an (additive) factor of O(1/d)
does not change the size by more than O(1). If we have repeated failures of regu-
larity for every λ ∈ [1/2, 1], then we can make ≈ d many steps (each of size O(1/d))
going from width 1/2 to width 1, each time increasing the size of the Bohr set by
a multiplicative factor. But this means that |B| ≥ Cd|B1/2| which, for a suitably

large constant C > 8, contradicts the fact that |B| ≤ 8d|B1/2| from Lemma 17.
The previous covering lemma, and a careful choice of initial constants, allows us to
carry out this procedure and get the desired contradiction.

Proof of Lemma 18. Let B be the Bohr set Bohr(Γ; ρ). To make things more visi-
ble, let B(δ) = Bδ = Bohr(Γ; δρ).

Suppose that the lemma is false. This means that for every λ ∈ [ 1
2 , 1] there exists

some 0 < δλ ≤ 1
200d such that either

|B((1 + δλ)λ)| > (1 + 200δλd) |B(λ)| .

or

|B((1− δλ)λ)| < (1− 200δλd) |B(λ)| .

In either case, we have

|B((1 + δλ)λ)| > (1 + 100δλd) |B((1− δλ)λ)| .

Consider the collection of intervals of the shape Iλ = ((1 − 2δλ)λ, (1 + 2δλ)λ) for
all λ ∈ [ 1

2 + 1
100d , 1−

1
100d ]. By Lemma 19, there is some finite set {λ1 < · · · < λk}

such that the corresponding Iλi are all disjoint and have total measure at least
1/4− 1/100d ≥ 1/5, and so ∑

4δλiλi ≥ 1/5,

and so ∑
δλi ≥ 1/20.

Since (1− δλ1)λ1 ≥ 1/2 and (1 + δλk)λk ≤ 1 we have

|B(1/2)|
|B|

≤ |B((1− δλ1)λ1)|
|B((1 + δλk)λk)|

.

We further note that, since the disjointness of the intervals above implies that
(1 + δλi)λi ≤ (1− δλi+1

)λi+1, we have∣∣B((1− δλi+1
)λi+1)

∣∣
|B((1 + δλi)λi)|

≥ 1.
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Therefore, using our initial assumption,

|B(1/2)|
|B|

≤ |B((1− δλ1
)λ1)|

|B((1 + δλk)λk)|

≤
k∏
i=1

|B((1− δλi)λi)|
|B((1 + δλi)λi)|

<

k∏
i=1

(1 + 100δλid)−1.

Using the inequality 1 + x ≥ ex/2, valid for all 0 ≤ x ≤ 1, this implies

|B(1/2)|
|B|

≤ exp(− 50
20d)) < 8−d,

say, since 5/2 ≥ log 8. By Corollary 17, however, the left hand side is at least 8−d

and we have a contradiction. �

The following lemmas indicate how regularity of Bohr sets will be exploited. It
allows us to remove convolutions by a narrow dilate of B (with a small error).

Lemma 20. If B is a regular Bohr set of rank d and B′ ⊂ Bδ, with 0 < δ ≤ 1/200d,
then for any function f supported on B satisfying |f(x)| ≤M for all x ∈ B,

〈f, 1B ∗ 1B′〉 = 〈f, 1B〉 |B′|+O(δdM |B| |B′|).

In particular, if A ⊂ B, then

〈1A, 1B ∗ 1B′〉 = |A| |B′|+O(δd |B| |B′|).

Proof. We have, since f is supported on B,

〈f, 1B ∗ 1B′〉 − 〈f, 1B〉 |B′| =
∑
x∈B

f(x) (1B ∗ 1B′(x)− |B′|) .

By the triangle inequality, this is at most

M
∑
x∈B
|1B ∗ 1B′(x)− |B′|| = M

∑
x∈B

∣∣∣∣∣∣
∑
y∈B′

(1B(x− y)− 1)

∣∣∣∣∣∣
≤M

∑
y∈B′

∑
x∈B
|1B(x− y)− 1|

= M
∑
y∈B′
|B\(B + y)|.

We now note that B1−δ ⊂ B + y – indeed, if z ∈ B1−δ and y ∈ Bδ then z − y ∈
B1−δ +Bδ ⊆ B. Therefore, by the definition of regularity,

|B\(B + y)| ≤ |B\B1−δ| � δd |B| ,

and the proof is complete. �
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7. Bourgain’s bound for Roth’s theorem

We will now prove Bourgain’s bound for sets without three-term arithmetic
progressions. The overall strategy is to mimic the proof we did in Fnp , but with
Bohr sets playing the role of subspaces. The main complication is that since Bohr
sets are not closed under addition by themselves, but are approximately closed
under addition by a narrow dilate (at least, if the Bohr sets are regular), we will
have to work with several widths of the same Bohr set simultaneously.

Our goal is the following result.

Theorem 8 (Bourgain 1999). If A ⊂ {1, . . . , N} has no non-trivial three-term
arithmetic progressions then

|A| �
(

log logN

logN

)1/2

N.

In particular, |A| /N → 0 as N →∞.

An immediate problem if we try to prove this theorem is that {1, . . . , N} is not
a group! Everything we’ve developed in this chapter has been for finite abelian
groups. So we will in fact prove the following.

Theorem 9 (Bourgain 1999). Let G be a finite abelian group of odd order N . If
A ⊂ G has no non-trivial three-term arithmetic progressions then

|A| �
(

log logN

logN

)1/2

N.

(Note that this also includes the case when G = Fnp with p ≥ 3 an odd prime,
but of course in this case we have already proved the much better bound |A| �
N/ logN .)

Even though {1, . . . , N} is not a group, there is a neat trick that allows us to
deduce Theorem 8 from Theorem 9.

Proof of Theorem 8 assuming Theorem 9. Suppose A ⊂ {1, . . . , N} contains no
non-trivial 3APs. Let M = 2N − 1. Suppose that A had a non-trivial 3AP modulo
M . This means that there are distinct x, y, z ∈ A such that x+ y ≡ 2z (mod M).
But since 1 ≤ x, y, z ∈ N , we have

−M < 2− 2N ≤ x+ y − 2z ≤ 2N − 2 < M.

Therefore x + y − 2z ≡ 0 (mod M) implies x + y − 2z = 0, and we have found
a genuine non-trivial 3AP in A, which is a contradiction. Therefore A, viewed as
a subset of Z/MZ, also has no non-trivial 3APs, and so Theorem 9 applies with
G = Z/MZ. Therefore

|A| �
(

log logM

logM

)1/2

M �
(

log logN

logN

)1/2

N.

�

As for the proof of Meshulam’s theorem, we will first state the density increment
lemma we will use, and then show how Theorem 9 follows from it.

Lemma 21. Let B be a regular Bohr set of rank d and width ρ. Let A ⊂ B be
a subset of density α = |A| / |B|. Suppose that A has no non-trivial three-term
arithmetic progressions. Then there is a constant c > 0 such that either
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(1) |A| � (d/α)O(d) |B|1/2, or
(2) there is a regular Bohr set B′ ⊂ B of rank ≤ d+ 1 and width � ρ(α/d)O(1)

and x such that

|(A− x) ∩B′|
|B′|

≥ (1 + cα)α.

We will now prove Theorem 9 by repeated applications of Lemma 21.

Proof. Let A ⊂ G be a fixed set of density α > 0 without non-trivial 3APs. We
can assume, without loss of generality, that α ≥ 1/ logN , or else we are done
immediately.

Let k ≥ 0 be maximal such that the following holds. There is a sequence of sets
A0, . . . , Ak and associated Bohr sets B0, . . . , Bk, with ranks d0, . . . , dk and widths
ρ0 ≥ · · · ≥ ρk, such that

(1) A0 = A and B0 = G, with d0 = 1 and ρ0 = 1 (taking the frequency set to
be just the trivial character, for example),

(2) Ai ⊂ Bi,
(3) Ai has no non-trivial 3APs,
(4) if αi = |Ai| / |Bi| then

αi+1 ≥ (1 + cαi)αi,

where c > 0 is the constant from Lemma 21,
(5) di ≤ i+ 1, and
(6) ρi+1 � (α/di)

O(1)ρi.

Just as in the proof of Theorem 7, part (4) implies that k � α−1.
We now apply Lemma 21 to Ak ⊂ Bk. By maximality of k, the second condition

of Lemma 21 can’t hold, and so (since dk ≤ k + 1� α−1)

1

logN
≤ α ≤ αk � (dk/α)O(dk) |Bk|−1/2 � (1/α)O(α−1) |Bk|−1/2

.

We now compare this to our lower bound for |Bk|. Since the rank of each Bohr set
is ≤ k + 1� α−1, we have for 0 ≤ i < k, the width relationship

ρi+1 � αO(1)ρi,

and so ρk � αO(dk) � αO(α−1). By our size lower bound for Bohr sets, Lemma 17,
we have

|Bk| ≥ (ρk/8)dkN � αO(α−2)N.

Therefore,
1

logN
� α−O(α−1) |Bk|−1/2 � α−O(α−2)N−1/2.

Rearranging and taking logarithms, this implies

α−2 log(1/α)� logN.

Since we are assuming that α ≥ 1/ logN , we have log(1/α)� log logN , and so

α−2 � logN

log logN
,

and so α� (log logN/ logN)1/2 as required. �
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Before we prove the density increment lemma Lemma 21, we need to prove two
supporting technical lemmas. These are to compensate for the fact that Bohr sets
are not closed under addition, and we need to work with narrower Bohr sets instead
and use regularity.

The first of our two supporting lemmas will be used to replace the fact that, in
Fnp , we could exactly work out the number of 3APs when one of the copies of A was

replaced by G: namely that 〈1G ∗ 1A, 12·A〉 = α2 |G|2. This is no longer possible if
we replace G by some Bohr set. We will show that, using regularity, we can recover
a suitable lower bound for this count, if instead of replacing A we replace 2 · A by
2 ·Bδ, provided δ is sufficiently small – or at least, either this is possible, or else we
have a density increment anyway.

Lemma 22. Let B be a regular Bohr set of rank d and width ρ. Suppose that
δ ≤ c0α/d for some sufficiently small constant c0 > 0 such that Bδ is also regular.
Let A ⊂ B with density α = |A| / |B|. Either

(1) (many ‘progressions’) 〈1A ∗ 1A, 12·Bδ〉 ≥ 1
2α

2 |B| |Bδ| or
(2) (density increment) there is a regular Bohr set B′ of rank ≤ d and width
� δ2ρ and an x such that

|(A− x) ∩B′|
|B′|

≥ (1 + 1/256)α.

Proof. If the first condition fails then

1
2α

2 |B| |Bδ| > 〈1A ∗ 1A, 12·Bδ〉 = 〈1A, 12·Bδ ◦ 1A〉.

This means that there can’t be too many elements of A where 12·Bδ ◦ 1A is large.
More precisely, decompose A = Alarge tAsmall, where

Alarge = {x ∈ A : 12·Bδ ◦ 1A(x) > 3
4α |Bδ|}.

We have
1
2α

2 |B| |Bδ| > 〈1A, 12·Bδ ◦ 1A〉 ≥ 3
4α |Bδ| |Alarge| ,

and so |Alarge| < 2
3 |A|, and hence |Asmall| ≥ 1

3 |A|.
So we know that Asmall is large, so there are many elements in A where 12·Bδ ◦1A

is small. We now show how to upgrade this to find many elements in B where this
convolution is small. Let c ∈ [1/2, 1] be such that Bcδ2 is regular. The key is to
note that, by regularity of Bδ, for any z ∈ Bcδ2 ,

|(2 ·Bδ − 2z)\2 ·Bδ| = |(Bδ − z)\Bδ| ≤
∣∣B(1+cδ)δ\Bδ

∣∣� δd |Bδ| ,

and hence for any y ∈ Asmall we have

12·Bδ ◦ 1A(y + 2z) = |(2 ·Bδ − 2z) ∩ (A+ y)|
≤ |2 ·Bδ ∩ (A+ y)|+O(δd |Bδ|)
= 12·Bδ ◦ 1A(y) +O(δd |Bδ|).

In particular, for any x ∈ Asmall + 2 ·Bcδ2 , since δ ≤ c0α/d, provided c0 is a small
enough, we have

12·Bδ ◦ 1A(x) < 7
8α |Bδ| .

We therefore let Bsmall = B ∩ (Asmall + 2 · Bcδ2). How large is Bsmall? We don’t
know, but we will show that whether Bsmall is large or small, we can obtain a
density increment.
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Case 1: Suppose that |Bsmall| < 1
16 |B|. In this case we consider the convolution

〈1Asmall
∗12·Bcδ2 , 1B〉. By regularity, and noting that 2 ·Bcδ2 ⊂ Bcδ2 +Bcδ2 ⊂ B2cδ2 ,

〈1Asmall
∗ 12·Bcδ2 , 1B〉 = 〈1Asmall

, 1B ∗ 12·Bcδ2 〉 = |Asmall| |Bcδ2 |+O(δ2d |B| |Bcδ2 |).

(Note that the adjoint property would suggest a ◦12·Bcδ2 here in the second expres-
sion, but since Bohr sets are symmetric, it is the same whether we write ◦ or ∗ here!
This kind of substitution, between ◦ and ∗, which are equivalent for symmetric sets,
will doubtless happen again.)

Provided δ is small enough, this is at least

|Asmall| |Bcδ2 | − 1
8 |A| |Bcδ2 | ≥

1
8 |A| |Bcδ2 | .

Since 1Asmall
∗ 12·Bcδ2 is supported, inside B, on Bsmall, we have

〈1Asmall
∗ 12·Bcδ2 , 1B〉 ≤ |Bsmall|max

x
(1Asmall

∗ 12·Bcδ2 (x))

≤ 1
16 |B|max

x
(1A ∗ 12·Bcδ2 (x)).

Comparing the upper and lower bounds, we deduce that

max
x
|(A− x) ∩ 2 ·Bcδ2 | = max

x
1A ∗ 12·Bcδ2 (x) ≥ 2α |Bcδ2 | ,

and we have a density increment (even better than we needed), with B′ = 2 ·Bcδ2 .
Here we are using the observation that if B = Bohr(Γ; ρ) is a Bohr set then 2 ·B is
also a Bohr set of the same rank and width:

2 · Bohr(Γ; ρ) = Bohr(2−1Γ; ρ),

where

2−1Γ = {x 7→ γ(2−1x) : γ ∈ Γ}.
Here we use 2−1x to denote the inverse homomorphism to x 7→ 2x, which exists
since G is a finite group of odd order, so x 7→ 2x is an injective, and hence bijective,
homomorphism. Furthermore, if B is regular then 2 · B will also be regular, since
|(2 ·B)1+δ| = |2 ·B1+δ| = |B1+δ|.

Case 2: Suppose that |Bsmall| ≥ 1
16 |B|. In this case we consider the inner

product 〈12·Bδ ◦ 1A, 1B〉. As above, by regularity, provided δ is sufficiently small,
we have

〈12·Bδ ◦ 1A, 1B〉 ≥ (1− 1
256 ) |A| |Bδ| .

For an upper bound, we recall that if x ∈ Bsmall then 12·Bδ ◦1A(x) ≤ 7
8α |Bδ|. Also,

for any x ∈ B, either we have a density increment (with B′ = 2 ·Bδ), or

12·Bδ ◦ 1A(x) = |(A+ x) ∩ 2 ·Bδ| ≤ (1 + 1/256)α |Bδ| .

Combining these upper bounds, we deduce that

〈12·Bδ ◦ 1A, 1B〉 ≤ 7
8α |Bδ| |Bsmall|+ (1 + 1/256)α |Bδ| (|B| − |Bsmall|).

Comparing our lower and upper bounds and simplifying yields

( 1
8 + 1

256 ) |Bsmall| ≤ 1
128 |B| ,

which contradicts our lower bound on |Bsmall|, and so we must have the required
density increment. �
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The previous lemma shows our need to work on two different scales at once, and
to count 3APs where two elements come from B but the middle element comes
from a narrowed copy Bδ. This suggests that when working with A ⊂ B we need
to count 3APs where two elements come from A and the third comes from A∩Bδ.
There is a problem with this though – we don’t know how large A∩Bδ is. Indeed, it
might even be empty! Bδ is (possibly) much smaller than B, so might entirely miss
A. To avoid this, we show that there exists some translate of A which is reasonably
large in both a narrowed copy of B and also in a doubly narrowed copy of B – or,
as above, we have a density increment that we’re happy with.

Lemma 23. Let B be a regular Bohr set of rank d and suppose A ⊂ B has density
α = |A| / |B|. Suppose that B′, B′′ ⊂ Bδ where δ = c0αε/d for some sufficiently
small absolute constant c0 > 0. Then either

(1) there is an x ∈ B such that |(A− x) ∩B′| ≥ (1−2ε)α |B′| and |(A− x) ∩B′′| ≥
(1− 2ε)α |B′′|, or

(2) there is an x such that

max

(
|(A− x) ∩B′|

|B′|
,
|(A− x) ∩B′′|

|B′′|

)
≥ (1 + ε)α.

Proof. By regularity (in particular the second conclusion of Lemma 20),

〈1A ∗ 1B′ , 1B〉 = 〈1A, 1B ∗ 1B′〉
= |A| |B′|+O(δd |B| |B′|)
= α |B| |B′|+O(δd |B| |B′|).

In particular, provided δ ≤ cα/d for some small enough absolute constant c > 0,
we have

〈1A ∗ 1B′ , 1B〉 ≥ (1− ε/2)α |B| |B′|
and similarly

〈1A ∗ 1B′′ , 1B〉 ≥ (1− ε/2)α |B| |B′′| .
In particular, if µB′ = 1

|B′|1B′ and µB′′ = 1
|B′′|1B′′ then

〈1A ∗ µB′ + 1A ∗ µB′′ , 1B〉 ≥ (2− ε)α |B| .

By the pigeonhole principle, there exists some x ∈ B such that

1A ∗ µB′(x) + 1A ∗ µB′′(x) ≥ (2− ε)α.

If 1A∗µB′(x) ≥ (1+ε)α then we are in the second case, and similarly for 1A∗µB′′(x).
Thus either the second case holds, or else both

1A ∗ µB′(x) ≥ (1− 2ε)α

and

1A ∗ µB′′(x) ≥ (1− 2ε)α

as required. �

We are now ready to prove our density increment result, Lemma 21. The overall
structure of the proof is very similar to the simpler case in Fnp , Lemma 16, but there
are complications due to having to work with Bohr sets of different widths.
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Proof of Lemma 21. Let A ⊂ B with density α = |A| / |B|, where B is a regular
Bohr set of rank d and width ρ. We need to work with different layers of Bohr
sets in this proof, so it’s convenient to define them now: let B(1) = Bδ1 and
B(2) = (B(1))δ2 = Bδ1δ2 , where δi = ciα

2/d, with c1, c2 some absolute constants
chosen to be sufficiently small and such that B(1) and B(2) are themselves regular.

We begin by applying Lemma 23 with B(1), B(2) playing the roles of B′, B′′, and
ε = cα, where c > 0 is some small constant we’ll choose later. If the second case
holds, then we have a density increment as needed. Otherwise, there is some x such
that if we let A1 = (A − x) ∩ B(1), with density α1 = |A1| /

∣∣B(1)
∣∣, and similarly

A2 = (A− x)∩B(2), with density α2 = |A2| /
∣∣B(2)

∣∣, then min(α1, α2) ≥ (1− 2ε)α.
(In particular, provided ε ≤ 1/4, we have α1 ≥ α/2.)

Crucially, because A itself has no non-trivial 3APs, and 3APs are translation
invariant, there are still no non-trivial solutions to x+ y = 2z where x, y ∈ A1 and
z ∈ A2. This means that

〈1A1
∗ 1A1

, 12·A2
〉 = |A2| .

On the other hand, Lemma 22 implies that either we have a suitable density incre-
ment, and we are done, or else

〈1A1
∗ 1A1

, 12·B(2)〉 ≥ 1
2α

2
1|B(1)||B(2)|.

If α1 < 2|B(1)|−1/2, then we are in the first case: by repeated applications of the
second part of Lemma 17 we have that

∣∣B(1)
∣∣ ≥ (δ1)O(d) |B|, and hence

α ≤ 2α1 � |B(1)|−1/2 � (d/α)O(d) |B|−1/2

as required. Otherwise, if f = 12·A2
− α212·B(2) , then

〈1A1 ∗ 1A1 , f〉 ≤ |A2| − 1
2α

2
1|B(1)| |A2| ≤ − 1

4α
2
1|B(1)| |A2| .

By Parseval’s identity and the triangle inequality (just as in the proof of Lemma 16)
we deduce that

E
γ

∣∣∣f̂(γ)
∣∣∣ ∣∣∣1̂A1

(γ)
∣∣∣2 � α2|B(1)| |A2| .

Again, just as in the proof of Lemma 16, since by Parseval’s identity we have

Eγ |1̂A1
(γ)|2 = |A1|, we deduce that there exists some character λ such that∣∣∣f̂(λ)

∣∣∣� α1 |A2| .

We now simplify matters by noting that if fA = 1A2
− α21B(2) , then for any x, we

have f(2x) = fA(x), and so

f̂A(2λ) =
∑
x

f(2x)λ(2x) =
∑
y

f(y)λ(y) = f̂(λ).

In particular, there is some γ such that |f̂A(γ)| � α1 |A2|.
We let B′ be the Bohr set formed by adding γ to the frequency set of B(2) and

then multiplying the width by a factor of c3α
2/d, where c3 > 0 is another constant

chosen in particular so that B′ is regular. We will first use regularity to replace
fA = 1A2

− α21B(2) by f ′A = 1A2
− α21B(2)+B′ . We have that∣∣∣f̂A(γ)− f̂ ′A(γ)

∣∣∣ ≤ α2

∣∣∣(B(2) +B′)\B(2)
∣∣∣� c3α2α

2
∣∣∣B(2)

∣∣∣ ,
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and in particular, assuming c3 is sufficiently small enough, we still have∣∣∣f̂ ′A(γ)
∣∣∣� α |A2| .

As in the proof of Lemma 16, let θ ∈ C be such that θf̂ ′A(γ) = |f̂ ′A(γ)|, so that

〈f ′A, θγ(y) + 1〉 =
∣∣∣f̂ ′A(γ)

∣∣∣+
∑
x

fA(x)

and hence, since by regularity∑
x

fA(x) = |A2| − α2|B(2) +B′| = −α2|(B(2) +B′)\B(2)| � c3α2α
2|B(2)|,

provided c3 is small enough, we have

〈f ′A, θγ + 1〉 � α1 |A2| � α |A2| .

In the proof of Lemma 16 we divided the sum into cosets v + V ′. In our present
case, there is no such neat decomposition into cosets, so instead we average over all
translates x+B′ as x ranges over B(2).

Thus, by regularity of B(2), (and since |f ′A(x)| � 1 for all x)

∑
x∈B(2)

 ∑
y∈B′+x

f ′A(y)(θγ(y) + 1)

 = 〈1B(2) ∗ 1B′ , f
′
A(θγ + 1)〉

= |B′| 〈1B(2)f ′A, θγ + 1〉+O(c3α
2|B(2)| |B′|).

We relate the value of this inner product to that above by regularity yet again (and
using that |f ′A(θγ + 1)| � 1 and that f ′A is supported on B(2) +B′):

〈f ′A, θγ + 1〉 − 〈1B(2)f ′A, θγ + 1〉 � |(B(2) +B′)\B(2)| � c+ 3α2|B(2)|,

and so, provided we choose c3 small enough, we have

〈1B(2)f ′A, θγ + 1〉 � α |A2|

and hence ∑
x∈B(2)

 ∑
y∈B′+x

f ′A(y)(θγ(y) + 1)

� α |A2| |B′| .

Finally, we note that while γ(y) is not constant on the translates B′ + x, it is
approximately constant: indeed, if y = t+ x where t ∈ B′, then

|γ(y)− γ(x)| = |1− γ(t)| � c3α/d,

since γ was included in the frequency set of B′. Therefore,

∑
x∈B(2)

(θγ(x) + 1)

 ∑
y∈B′+x

f ′A(y)

 ≥ c4α1 |A2| |B′| −O(c3
α
d

∣∣∣B(1)
∣∣∣ ∣∣∣B(2)

∣∣∣).
Once again, provided we have chosen c3 > 0 small enough, this right-hand side is
at least 1

2c4α1 |A2| |B′|. Taking the real parts and averaging over all x ∈ B(2), as

in the proof of Lemma 16, we deduce that there exists some x ∈ B(2) such that

|A2 ∩ (B′ + x)| − α2 |B′| =
∑

y∈B′+x
f ′A(y)� αα2 |B′| .
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In particular, there is an absolute constant c > 0 such that

|(A2 − x) ∩B′|
|B′|

≥ (1 + cα)α2 ≥ (1 + cα)(1− 2ε)α.

If we choose ε = cα/8, then the right-hand side is ≥ (1 + c
4α)α, and we are done,

since A2 itself was a subset of a translate of A. �



CHAPTER 3

Almost-periodicity

We use τt to denote the translation by t operator, so that if f : G → C then
τtf(x) = f(x− t) for any x ∈ G. A period of a function is some t such that τtf = f .
For example,

(1) every function has 0 as a period;
(2) sin(x) has period 2π; and
(3) if H ≤ G is a subgroup then any t ∈ H is a period for 1H .

Asking for an exact period is a very rigid constraint on t, which is difficult
to achieve in practice, and most functions will not have any non-trivial periods.
This is similar to the situation with small sumsets we explored in Chapter 1: the
exact condition |A+A| = |A| is very rarely achieved except for very structured
sets, so we instead relaxed the condition and studied the behaviour of sets A with
|A+A| � |A| instead.

In this section we will do the same for the notion of periods, relaxing the defini-
tion to ‘almost-periods’, which is a much more flexible notion – roughly speaking,
the idea is that instead of asking for τtf = f , we weaken this to τtf ≈ f , for a
precise notion of ≈. We will show how to find large sets of almost-periods, and then
show how this can be applied to prove several interesting results quite quickly.

We will be particularly interested in finding almost-periods for convolutions –
since a sumset is exactly the support of a convolution. For example, if we know
that x ∈ A + B, then 1A ∗ 1B(x) > 0, and if t is such that τt(1A ∗ 1B) ≈ 1A ∗ 1B ,
we we expect 1A ∗ 1B(x + t) > 0 also, and so x + T ⊂ A + B, where T is the set
of almost-periods. Thus the study of almost-periods is a very useful tool in finding
structures inside sumsets.

A useful way to think of almost-periods is as a coarse type of ‘continuity’. Recall
that a function f being uniformly continuous means that, for all x, the difference
|f(x+ t)− f(x)| is very small for small t, or put another way, ‖τtf − f‖∞ is small.
Thus if a function f : R → R is uniformly continuous then, for any ε, we can find
a ball Bε around the origin such that for all t ∈ Bε, we have ‖τtf − f‖∞ ≤ ε.
Almost-periodicity is a similar property for functions f : G → C, but where we
have the additional flexibility of replacing the L∞ norm by some Lp norm. Recall
that ‖f‖∞ = supx |f(x)| and for any 1 ≤ p <∞ we define the Lp norm on functions
f : G→ C by

‖f‖p =

(∑
x∈G
|f(x)|p

)1/p

.

These are norms, and in particular satisfy the triangle inequality. It is also obvious
that they are invariant under the translation operator, so that for any t ∈ G, we
have ‖τtf‖p = ‖f‖p. The idea is that t is an Lp-almost period if ‖τtf−f‖p is small.
More precisely, we have the following.

43
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Definition 7 (Almost-periods). Let m ≥ 1 be an integer and X > 0. For
any 1 ≤ p ≤ ∞ and f : G → C we define the set of Lp-almost periods of f
with error X by

APp(f ;X) = {t ∈ G : ‖τtf − f‖p ≤ X}.

Before we state our main theorems, we observe a couple of trivial properties.

• For any p, f,X, the set APp(f ;X) is a symmetric set containing 0. Indeed,
we have τ0f − f ≡ 0, and if t ∈ APp(f ;X) then

‖τ−tf − f‖p = ‖f − τ−tf‖p = ‖τt(f − τ−tf)‖p = ‖τtf − f‖p.
• Almost-period sets are increasing in X, in that if X ′ ≥ X then APp(f ;X) ⊆

APp(f ;X ′).
• For any p, f , for large enough X the set of almost-periods is the entire

group: APp(f ; 2‖f‖p) = G. This follows from the triangle inequality,

‖τtf − f‖p ≤ ‖τtf‖p + ‖f‖p ≤ 2‖f‖p.
• Addition of sets of almost-periods adds the errors, in the sense that

APp(f ;X1) + APp(f ;X2) ⊂ APp(f ;X1 +X2).

Again, this is an immediate consequence of the triangle inequality, since

‖τt1+t2f − f‖p ≤ ‖τt1+t2f − τt2f‖p + ‖τt2f − f‖p
= ‖τt1f − f‖p + ‖τt2f − f‖p.

Our first general result on almost-periods says that for any function f we can
find a reasonably large Bohr set in the set of almost-periods where the error is
proportionate to

‖f̂‖1 =E
γ

∣∣∣f̂(γ)
∣∣∣ .

Theorem 10 (Large Bohr sets of almost-periods). Let ε ∈ (0, 1) and m ≥ 1. For

any function f : G→ C the set of L2m-almost-periods of f with error ε‖f̂‖1N1/2m

contains a Bohr set B of rank O(mε−2) and width � ε.

Our second type of result is just a lower bound on the number of almost-periods,
and this only works for functions which are convolutions 1A ∗ 1B , where A is some
structured set (but B need not be!).

Theorem 11 (Convolutions have many almost-periods; Dense set version). Let
ε > 0 and m ≥ 1, and G be some finite abelian group of order N . Suppose that
A ⊂ G with density α = |A| /N . For any set B,∣∣∣AP2m(1A ∗ 1B ; ε |A| |B|1/2m)

∣∣∣ ≥ αO(mε−2)N.

Theorem 12 (Convolutions have many almost-periods; Small doubling version).
Let ε > 0 and m ≥ 1. Suppose that |A+ S| ≤ K |A|. Then, for any set B,∣∣∣AP2m(1A ∗ 1B ; ε |A| |B|1/2m)

∣∣∣ ≥ K−O(mε−2) |S| .

We will first give two applications of these almost-periodicity results, and then
prove them. The proof of both will be probabilistic.
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8. Applications of almost-periodicity

An essential tool in our applications of almost-periodicity is Hölder’s inequality,
which we have already used several times in this course. As a reminder, Hölder’s
inequality states that, for any reals ai, bi ∈ R, and any p ≥ 1,∣∣∣∑ aibi

∣∣∣ ≤ ‖ai‖p‖bi‖p/(p−1) =
(∑

|ai|p
)1/p (∑

|bi|
p
p−1

)1−1/p

.

For example, the Cauchy-Schwarz inequality is Hölder’s inequality with p = 2.
The case p = 1 (where ‖bi‖p/(p−1) should be read as ‖bi‖∞) is obvious by the
triangle inequality. There are many different proofs available for Hölder’s inequality,
and if you don’t know one, I encourage you to try and discover one for yourself.
(One approach is to deduce Hölder’s inequality from the Cauchy-Schwarz inequality.
Another is to first show the simpler inequality that for any x, y ≥ 0, we have
xy ≤ 1

px
p + (1− 1

p )yp/(p−1).)

Hölder’s inequality implies, in particular, that for any function f : G → C and
any set A, for any m ≥ 1,

|〈1A, f〉| ≤ |A|1−1/2m ‖f‖2m,

which we will use frequently. Part of the power of almost-periodicity comes from
the fact that we will use such estimates for large m, in particular large enough so
that ‖f‖2m ≈ ‖f‖∞.

Our first application is to show that if A is a set with small doubling then we
can find a lot of structure inside A+A−A−A – in particular, this four-fold sumset
in fact contains some k-fold sumset kT where k can be very large indeed, and T
is also reasonably large. This will play a crucial role in our proof of the inverse
sumset results of the next chapter.

Theorem 13. If |A+A| ≤ K |A| then for any k ≥ 1 there is a symmetric set T
such that 0 ∈ T and

|T | ≥ exp(−O(k2(logK)2)) |A|
and

kT ⊂ A+A−A−A.

Proof. We apply Theorem 12 with S = A and B = A − A, and ε > 0 and m ≥ 1
to be chosen soon. Let T be the corresponding set of almost-periods, which in
particular is a symmetric set containing 0. Since addition of almost-periods adds
the errors, kT is a subset of the set of L2m-almost-periods for 1A ∗ 1A−A with error

kε |A| |A−A|1/2m, that is, for any t ∈ kT , we have

‖τt(1A ∗ 1A−A)− 1A ∗ 1A−A‖2m ≤ kε |A| |A−A|1/2m .

Suppose for a contradiction that there is some t ∈ kT such that t 6∈ A+A−A−A.
Then, in particular, 1A ∗ 1A−A ◦ 1A(t) = 0, and so

0 =
∑
a,b∈A

∑
c∈A−A

1a−b−c=t

=
∑
a∈A

∑
b∈A

∑
c∈A−A

1b+c=a−t

= 〈1A, τt(1A ∗ 1A−A)〉.
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On other hand, we have

〈1A, 1A ∗ 1A−A〉 =
∑
a,b∈A

∑
c∈A−A

1a−b=c = |A|2 .

Taking the difference,

|〈1A, (τt(1A ∗ 1A−A)− 1A ∗ 1A−A)〉| = |A|2 .

On the other hand, by Hölder’s inequality, the left-hand side is at most

|A|1−1/2m ‖τt(1A ∗ 1A−A)− 1A ∗ 1A−A‖2m ≤ kε |A|2 (|A−A| / |A|)1/2m.

By Plünnecke’s inequality |A−A| ≤ K2 |A|, and hence if we choose m = dlogKe,
then the right-hand side is at most ekε |A|2. Choosing ε = 1/2ek, say, gives a
contradiction.

Thus the theorem is proved, since the size of T is

|T | ≥ K−O(mε−2) |A| ≥ exp(−O(k2(logK)2)) |A| .

�

For our second application, we will use Theorem 10, which guarantees a large
Bohr set of almost-periods. We will use this to answer the following natural ques-
tion: given a reasonably large subset A of {1, . . . , N}, how long an arithmetic
progression must A+A contain?

Theorem 14. There are constants c > 0 and C ≥ 1 such that the following is
true for all large N . Suppose that A ⊂ {1, . . . , N} has size |A| = αN , where

α ≥ C log logN√
logN

. Then A+A contains an arithmetic progression of length

� exp(cα
√

logN).

Note that this is already interesting and non-trivial when α = 1/4, for example.
Furthermore, the lower bound becomes trivial when α� log logN/

√
logN , so this

is only saying something for reasonably dense sets.
The proof we give here is due to Croot,  Laba, and Sisask. The first proof of

Theorem 14 was given (by quite different, pre-almost-periodicity methods) by Ben
Green. The dependence on N here (with α = 1/4, say) is still the best-known,
but it is an open problem to find the optimal dependence. The best known upper
bound is a construction of Ruzsa, which in particular yields a subset A of {1, . . . , N}
of size ≥ 1

4N such that the longest arithmetic progression in A + A is of length

exp(O(logN)2/3 log logN).
Before the proof, we note the following simple fact about Bohr sets which we

will use.

Lemma 24. If N is a prime and B ⊂ Z/NZ is a Bohr set of rank d and width ρ
then B contains an arithmetic progression of length � ρN1/d.

Proof. Let ` ≥ 1 be maximal such that (ρ/8`)d ≥ 2/N . It is clear that `� ρN1/d.
Our lower bound for the size of Bohr sets implies that

∣∣B1/`

∣∣ ≥ 2, and in particular
B1/` contains some non-zero element x. By the triangle inequality we have `B1/` ⊂
B, and in particular P = `{0, x} is an arithmetic progression of length ` contained
inside B (note that since N is prime P does indeed have size `). �
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Proof. We first note that, just as when searching for three-term arithmetic progres-
sions in {1, . . . , N}, it suffices to prove the same result with {1, . . . , N} replaced by
Z/NZ. Indeed, let 4N < M ≤ 8N be prime, and note that A + A ⊂ {1, . . . , 2N}.
We claim that any arithmetic progression modulo M inside A + A is a genuine
arithmetic progression in the integers (of the same length).

Let P be an arithmetic progression modulo M inside A + A, that is, a set
{x0, . . . , xk} ⊂ A+A where there is d ∈ Z such that xi ≡ x+id (mod M). Without
loss of generality, since d ≡ x1 − x0 (mod M), we can assume that d = x1 − x0.
By induction we then have that in fact that xi = x+ id for all 0 ≤ i ≤ k – indeed,
suppose that i ≥ 2 is minimal such that this fails. Then

xi − (x+ id) = xi − (xi−1 + d) = xi + x0 − xi−1 − x1 ∈ {−4N, . . . , 4N},

and in particular |xi − (x+ id)| < M , and so in fact xi ≡ x + id (mod M) forces
xi = x + id, as required. Thus P ⊂ A + A is not only an arithmetic progression
modulo M , but also a genuine arithmetic progression of the same length. We can
therefore concentrate on proving the result with Z/NZ.

The idea is to use Theorem 10 to find some large Bohr set of almost-periods for
1A ∗ 1A, and then find a long progression P inside this Bohr set, and use almost-
periodicity to show that some translate of P (not necessarily P itself!) is inside
A+A.

Let T be the set of L2m-almost periods of 1A ∗ 1A with error α
4 |A|N

1/2m. We
first observe that this is exactly the set of almost-periods addressed by Theorem 10
with ε = α/4, since

E
γ

| ̂1A ∗ 1A(γ)| =E
γ

|1̂A(γ)|2 = |A| .

By Hölder’s inequality, for any f : G×G→ C, and any P ⊂ G,

∑
x∈G

sup
t∈P
|f(x, t)| ≤

∑
x∈G

(∑
t∈P
|f(x, t)|2m

)1/2m

≤ N1−1/2m

(∑
t∈P

∑
x∈G
|f(x, t)|2m

)1/2m

≤ N1−1/2m |P |1/2m sup
t∈P
‖f(·, t)‖2m.

In particular, for any P ⊂ T ,∑
x∈G

sup
t∈P
|1A ∗ 1A(x+ t)− 1A ∗ 1A(x)| ≤ |P |1/2mN1−1/2m max

t∈P
‖τt(1A ∗ 1A)− 1A ∗ 1A‖2m

≤ 1

4
|A|2 |P |1/2m .

In particular, provided |P | < 42m, this is less than |A|2 =
∑
x∈G 1A ∗ 1A(x), and

hence there is some x ∈ G such that for all t ∈ P , we have

sup
t∈P
|1A ∗ 1A(x+ t)− 1A ∗ 1A(x)| < 1A ∗ 1A(x).

But this means that 1A ∗ 1A(x+ t) 6= 0 for all t ∈ P , whence x+ P ⊂ A+A.
It remains to choose m so that our set of almost-periods contains a progression

P of appropriate length. By Theorem 10, the almost-periods contain a Bohr set of
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rank O(mα−2) and width� α, and hence a progression P of length ≥ c1αN c2α
2/m

for some small constants 1 > c1, c2 > 0.
If we choose m = bα

√
logNc then by assumption we have m ≥ 1 and we can

find a progression P of length ` = bc1α exp(c2α
√

logN)c. In particular

` ≤ exp(c2α
√

logN) ≤ e2m < 42m

as required, and so we have found an arithmetic progression of length ` inside A+A.
(The final shape of the bound comes from the fact that bxc ≥ x/2 provided x ≥ 1,
and α ≥ C log logN/

√
logN for large enough constant C (depending on c1 and c2)

guarantees that c1α exp(c2α
√

logN) ≥ exp( c22 α
√

logN) ≥ 1, say.) �

9. Probabilistic inequalities

In this section the E symbol denotes the probabilistic expectation of
a random variable. All random variables in this section should be read
as taken over some finite probability space.

Suppose we have n independent random variables X1, . . . , Xn. Consider their
sum X1 + · · · + Xn. Can we control the L2m norm of the sum by the L2m norms
of the individual Xi? Hölder’s inequality and the triangle inequality immediately
give such control:

E
∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣
2m

≤ n2m−1
n∑
i=1
E|Xi|2m.

It is a very useful fact that, when the random variables are balanced by subtract-
ing their mean, this estimate can be improved by a factor of (4m/n)m – which, for
fixed m and n→∞, becomes very significant.

Lemma 25 (Marcinkiewicz-Zygmund inequality). Let m ≥ 1. If X1, . . . , Xn are
independent complex-valued random variables with mean zero then

E
∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣
2m

≤ (4m)mE
(

n∑
i=1

|Xi|2
)m

.

In particular,

E
∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣
2m

≤ (4m)mnm−1E
n∑
i=1

|Xi|2m .

Proof. The second inequality follows immediately from the first using Hölder’s in-
equality. We will concentrate on proving the first. Fix some m ≥ 1. We want to
understand the average

S = E

∣∣∣∣∣∑
i

Xi

∣∣∣∣∣
2m

.

We first introduce a new family of random variables by letting (Yi)1≤i≤n be new
random variables distributed identically to the respective Xi (although completely
independently sampled). Since each has EYi = 0 we can write, by linearity of
expectation, the triangle inequality, and Hölder’s inequality,

S =E
Xi

∣∣∣∣∣∑
i

Xi −E
Yi

Yi

∣∣∣∣∣
2m

=E
Xi

∣∣∣∣∣E
Yi

(∑
i

Xi − Yi

)∣∣∣∣∣
2m

≤ E
Xi,Yi

∣∣∣∣∣∑
i

Xi − Yi

∣∣∣∣∣
2m

.
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Next, we make the crucial observation: that since Xi and Yi are identically
distributed, Xi − Yi has the same distribution as Yi − Xi. Thus, for any εi ∈
{−1,+1},

S ≤ E
Xi,Yi

∣∣∣∣∣∑
i

εi(Xi − Yi)

∣∣∣∣∣
2m

.

In particular, if we sample εi ∈ {−1,+1} uniformly at random, then

S ≤E
εi
E
Xi,Yi

∣∣∣∣∣∑
i

εi(Xi − Yi)

∣∣∣∣∣
2m

.

We now change the order of expectation and consider the expectation over just
εi, viewing the Xi − Yi = xi, say, as fixed quantities. For any xi we can expand
Eεi |

∑
i εixi|2m and then bound it from above, using the triangle inequality, by∑

k1+···+kn=2m

(
2m

k1, . . . , kn

)
|x1|k1 · · · |xn|kn

∣∣∣E εk11 · · · εknn
∣∣∣ .

The inner expectation vanishes unless each ki is even, when it is trivially one.
Therefore the above quantity is exactly

∑
l1+···+ln=m

(
2m

2l1, . . . , 2ln

)
|x1|2l1 · · · |xn|2ln ≤ mm

(
n∑
i=1

|xi|2
)m

,

since for any l1 + · · ·+ ln = m,(
2m

2l1, . . . , 2ln

)
≤ mm

(
m

l1, . . . , ln

)
.

This can be seen, for example, by writing both sides out using factorials, yielding

(2m)!

(2l1)! · · · (2ln)!
≤ (2m)!

2mm!

m!

l1! · · · ln!
≤ mm m!

l1! · · · ln!
.

In particular,

S ≤ mm E
Xi,Yi

(∑
i

|Xi − Yi|2
)m

.

We now apply Hölder’s inequality, first in the form |a− b|2 ≤ 2(|a|2 + |b|2) to get

S ≤ 2mmm E
Xi,Yi

(∑
i

|Xi|2 +
∑
i

|Yi|2
)m

,

and secondly in the form (a+ b)m ≤ 2m−1(am + bm) to get

S ≤ 4mmmE
(∑

i

|Xi|2
)m

as required. �
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10. Almost-periodicity via random sampling in Fourier space

In this section we will prove Theorem 10, which finds a large Bohr sets of almost-

periods for a function f with small ‖f̂‖1. The proof breaks down into two stages:
we will first find some function g such that f ≈ g (in the L2m sense) and g is
defined using only a small number of characters. We then observe that if t is taken
from the Bohr set that approximately annihilates these characters then t must be
an almost-period for g (since then γ(x+ t) ≈ γ(x) for all x), and hence also for f ,
since then

τtf ≈ τtg ≈ g ≈ f.

Lemma 26. Let ε ∈ (0, 1) and m ≥ 1. For any function f : G → C there is k =

O(mε−2) and (not necessarily distinct) γ1, . . . , γk ∈ Ĝ together with c1, . . . , ck ∈ C
with |ci| = 1 such that, if

g(x) =
‖f̂‖1
k

k∑
i=1

ciγi(x),

then

‖g − f‖2m ≤ ε‖f̂‖1N1/2m.

Proof. Dilating f by a constant if necessary, without loss of generality, we can

assume that ‖f̂‖1 = 1/N , so that
∑
γ

∣∣∣f̂(γ)
∣∣∣ = 1. This naturally suggests a prob-

ability distribution on the space of all characters, where we choose γ ∈ Ĝ with

probability
∣∣∣f̂(γ)

∣∣∣.
We consider the random function h(x) = 1

N cγγ(x) where γ ∈ Ĝ is chosen as

above, and cγ ∈ C is such that f̂(γ) = cγ

∣∣∣f̂(γ)
∣∣∣. The key observation is that, for

any x ∈ G, the expectation of h(x) under this probability distribution is just f(x),
since

Eh(x) =
1

N

∑
γ

∣∣∣f̂(γ)
∣∣∣ cγγ(x) =

1

N

∑
γ

f̂(γ)γ(x) = f(x).

In particular, for any fixed x, the random variable h(x)−f(x) has mean zero. Thus
we can apply the Marcinkiewicz-Zygmund inequality, applied to k independently
sampled such h1, . . . , hk. Thus we have, for any fixed x,

E
∣∣∣∣∣1k

k∑
i=1

(hi(x)− f(x))

∣∣∣∣∣
2m

≤ (16m/k)mE 1

k

k∑
i=1

|hi(x)− f(x)|2m .

Note that, for any x, by the triangle inequality,

|f(x)| = 1

N

∣∣∣∣∣∑
γ

f̂(γ)γ(x)

∣∣∣∣∣ ≤ 1/N,

and for any hi we have |hi(x)| = 1/N , and so

E
∣∣∣∣∣1k

k∑
i=1

hi(x)− f(x)

∣∣∣∣∣
2m

≤ (64m/k)mN−2m.
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Summing both sides over x ∈ G and changing the order of expectation and sum

yields, with g = 1
k

∑k
i=1 hi,

E
∑
x∈G

∣∣∣∣∣1k
k∑
i=1

hi(x)− f(x)

∣∣∣∣∣
2m

=E‖g − f‖2m2m
≤ (64m/k)mN−2m+1.

In particular, by the pigeonhole principle, there must exist some γ1, . . . , γk (not
necessarily distinct) such that, if

g(x) =
1

Nk

k∑
i=1

cγiγi(x)

then

‖g − f‖2m ≤ (64m/k)1/2N−1+1/2m = (64m/k)1/2‖f̂‖1N1/2m.

Choosing k = d64m/ε2e completes the proof. �

Theorem 15. Let ε ∈ (0, 1) and m ≥ 1. For any function f : G → C there is a
Bohr set B of rank O(mε−2) and radius Ω(ε) such that, for all t ∈ B,

‖τtf − f‖2m ≤ ε‖f̂‖1N1/2m.

Proof. By Lemma 26 there exist γ1, . . . , γk ∈ Ĝ with k � mε−2 and ci ∈ C with
|ci| such that the g defined there satisfies

‖g − f‖2m ≤ 1
3ε‖f̂‖1N

1/2m.

Let B = Bohr({γ1, . . . , γk}; ε/3). For any t ∈ B and x ∈ G, by the triangle
inequality,

|g(x+ t)− g(x)| ≤ ‖f̂‖1
k

k∑
i=1

|1− γi(t)| ≤
ε

3
‖f̂‖`1 .

In particular, for any t ∈ B,

‖τtg − g‖2m ≤ N1/2m‖τtg − g‖∞ ≤
ε

3
‖f̂‖`1N1/2m.

By the triangle inequality, therefore,

‖τtf − f‖2m ≤ ‖τtf − τtg‖2m + ‖τtg − g‖2m + ‖g − f‖2m ≤ ε‖f̂‖1N1/2m.

�

11. Almost-periodicity via random sampling in physical space

In this section we will prove our other main almost-periodicity result, Theo-
rem 12, which finds a large set of almost-periods for 1A ∗ 1B . The first part of
the proof is very similar to the previous section: by random sampling we will find
some function g such that 1A ∗ 1B ≈ g (in an L2m-sense). Instead of finding g
by randomly sampling Fourier space, however, we will randomly sampling physical
space. This is suggested by writing

1A ∗ 1B(x) =
∑
a∈A

1B(x− a).
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This suggests that if A′ ⊂ A is a random subset of A, then we might expect

1A ∗ 1B(x) ≈ |A|
|A′|

∑
a∈A′

1B(x− a).

We will use the Marcinkiewicz-Zygmund inequality to show that this is true. It is
slightly easier to work with tuples from Ak rather than subsets of A (in particular
so that we allow repetitions in A′).

We will also require something slightly stronger than we needed in the previous
section: not just that there exists some such randomly chosen g with 1A ∗ 1B ≈ g,
but even more, that this is true for almost-all such g.

Let k ≥ 1. If ~a ∈ Ak then, for any function f , we write

µ~a ∗ f(x) =
1

k

k∑
i=1

f(x− ai).

It is also convenient to write µA = 1
|A|1A. The following well-known inequality, a

special case of Young’s inequality for convolutions, will be useful.

Lemma 27 (Young’s inequality). For any f, g : G→ C and any p ≥ 1,

‖f ∗ g‖p ≤ ‖f‖p‖g‖1.

Proof. We have

‖f ∗ g‖pp =
∑
x∈G
|f ∗ g(x)|p =

∑
x∈G

∣∣∣∣∣∣
∑
y∈G

f(y)g(x− y)

∣∣∣∣∣∣
p

.

By Hölder’s inequality, (applied to the product |f(y)| |g(x− y)|1/p · |g(x− y)|1−1/p
)∣∣∣∣∣∣

∑
y∈G

f(y)g(x− y)

∣∣∣∣∣∣ ≤
∑
y∈G
|f(y)|p |g(x− y)|

1/p∑
y∈G
|g(x− y)|

1−1/p

,

and so

‖f ∗ g‖pp ≤ ‖g‖
p−1
1

∑
x,y∈G

|f(y)|p |g(x− y)| = ‖g‖p1‖f‖pp

as required. �

Lemma 28. Let ε > 0 and m ≥ 1. Let A ⊂ G and f : G→ [0, 1]. If k ≥ 256mε−2

then the set

{~a ∈ Ak : ‖µ~a ∗ f − µA ∗ f‖2m ≤ ε‖f‖2m}
has size ≥ (1− 2−2m) |A|k.

Proof. We will show that if ~a ∈ Ak is sampled uniformly at random then, if k ≥
256mε−2, we have

E‖µ~a ∗ f − µA ∗ f‖2m2m ≤ (ε/2)2m‖f‖2m2m.

The lemma then follows from this by averaging (also known as Markov’s inequality):
if L is the set in question, then the contribution to this expectation from those ~a 6∈ L
is at least (

1− |L|
|A|k

)
(ε‖f‖2m)2m,
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and hence comparing this to our upper bound we have(
1− |L|
|A|k

)
≤ 2−2m

as required.
Note that if a ∈ A is chosen uniformly at random then, for any fixed x ∈ G,

E f(x− ai) =
1

|A|
∑
a∈A

f(x− a) =
1

|A|
1A ∗ f(x) = µA ∗ f(x).

Therefore, if we choose a1, . . . , ak ∈ A independently uniformly at random, for any
fixed x ∈ G and 1 ≤ i ≤ k, the random variable f(x − ai) − f ∗ µA(x) has mean
zero. By the Marcinkiewicz-Zygmund inequality Lemma 25, therefore,

E
∣∣∣∣∣1k∑

i

f(x− ai)− f ∗ µA(x)

∣∣∣∣∣
2m

≤

(16m/k)mk−1E
∑
i

|f(x− ai)− f ∗ µA(x)|2m .

We now sum both sides over all x ∈ G. By the triangle inequality, for any fixed
1 ≤ i ≤ k and ai ∈ A,∑

x∈G
|f(x− ai)− f ∗ µA(x)|2m ≤ 22m−1

∑
x∈G
|f(x− ai)|2m +

∑
x∈G
|f ∗ µA(x)|2m

≤ 22m−1
(
‖f‖2m2m + ‖f ∗ µA‖2m2m

)
.

We note that ‖µA‖1 = 1
|A|
∑
x∈A 1A(x) = |A| / |A| = 1, and hence by Young’s

inequality, ‖f ∗ µA‖2m ≤ ‖f‖2m, and so∑
x∈G
|f(x− ai)− f ∗ µA(x)|2m ≤ 22m‖f‖2m2m.

It follows that

E
a1,...,ak∈A

‖1

k

∑
i

τaif − f ∗ µA‖2m2m ≤ (64m/k)m‖f‖2m2m.

In particular, if k ≥ 256ε−2m then the right-hand side is at most ( ε2‖f‖2m)2m as
required. �

We have do a little more work than in the Fourier case, since there is no obvious
large set of almost-periods available for µ~a ∗ f , even if ~a is a short vector. We will
have to use, in an essential way, both the small doubling assumption |A+ S| ≤
K |A|, and also the fact that we have found many ‘good’ approximations µ~a ∗ f .
We will combine these to show that the set of ‘good’ vectors in Ak is approximately
closed under diagonal translations, in the sense that there are many diagonal vectors
(t, . . . , t) for which both ~a and ~a+ (t, . . . , t) are ‘good’. But then it follows that

µ~a ∗ f ≈ µA ∗ f ≈ µ~a+(t,...,t) ∗ f = τt(µ~a ∗ f),

and so t is an almost-period for µ~a ∗ f , and hence for µA ∗ f .
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Theorem 16. Let ε > 0 and m ≥ 1. Suppose that A and S are such that |A+ S| ≤
K |A|. Then, for any function f , if T is the set of L2m-almost periods of µA ∗ f
with error ε‖f‖2m, we have

〈1S ◦ 1S , 1T 〉 � K−O(mε−2) |S|2 .

We will first show how to prove Theorem 12 from this, which is almost immediate.

Proof of Theorem 12. Let f = 1B in Theorem 16, so that ‖f‖2m = |B|1/2m. If T is

the set of L2m-almost-periods of µA ∗1B with error ε |B|1/2m, then by Theorem 16,∑
t∈T

1S ◦ 1S(t) = 〈1S ◦ 1S , 1T 〉 � K−O(mε−2) |S|2 .

But trivially 1S ◦ 1S(t) ≤ |S|, and so |T | � K−O(mε−2) |S|. Finally, we note that if
by dilation of norms, for any t ∈ T ,

‖τt(1A ∗ 1B)− 1A ∗ 1B‖2m = |A| ‖τt(µA ∗ 1B)− µA ∗ 1B‖2m ≤ ε |A| |B|1/2m

as required. �

Proof of Theorem 16. Let k = d1024mε−2e. By Lemma 28, if L ⊂ Ak is the set of
~a ∈ Ak such that

‖µ~a ∗ f − f ∗ µA‖2m ≤ 1
2ε‖f‖2m,

then |L| ≥ (1− 2−2m) |A|k.
The key observation is that if (t, . . . , t) ∈ L − L, or in other words, there is

~a(t) ∈ L such that ~a(t) + (t, . . . , t) ∈ L, then such a t ∈ T . Indeed,

‖τt(µ~a(t) ∗ f)− f ∗ µA‖2m = ‖µ~a(t)+(t,...,t) ∗ f − f ∗ µA‖2m
≤ 1

2ε‖f‖2m,

since ~a(t) + (t, . . . , t) ∈ L, and similarly

‖τt(µ~a(t) ∗ f)− τt(f ∗ µA)‖2m = ‖µ~a(t) ∗ f − f ∗ µA‖2m
≤ 1

2ε‖f‖2m,

since ~a(t) ∈ L. It follows by the triangle inequality that

‖τt(f ∗ µA)− f ∗ µA‖2m ≤ ε‖f‖2m

as required.
So understanding T becomes understanding which diagonal vectors appear in

L − L. Since L ⊂ Ak is very large, in fact almost all of all possible k-tuples in
Ak, one might expect that in the difference set L−L we could find many diagonal
vectors (t, . . . , t). This is not true in general, since A might be very sparse – for
example, if A = {1, 2, 4, . . . , 2m} then the only non-zero diagonal vectors in Ak−Ak
come from differences of diagonal vectors (a, . . . , a). Since L ⊂ Ak could be very
large while not containing any of the |A| diagonal vectors, we cannot be sure that
L− L contains any non-zero diagonal vectors at all.

This is where the small doubling assumption |A+ S| ≤ K |A| comes in handy.
Let ∆ = {(s, . . . , s) : s ∈ S} ⊂ Sk. Note that ∆−∆ = {(s′, . . . , s′) : s′ ∈ S − S} is
also a set of diagonal vectors, and that 1∆ ◦ 1∆(s′, . . . , s′) = 1S ◦ 1S(s′).
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Since L + ∆ ⊂ (A + S)k, we have |L+ ∆| ≤ Kk |A|k ≤ 2Kk |L|, say. By the
Cauchy-Schwarz inequality, therefore, used just as when we bounded the additive
energy from below in terms of the sumset, we have

〈1L ◦ 1L, 1∆ ◦ 1∆〉 = ‖1L ∗ 1∆‖22 ≥
|L|2 |∆|2

|L+ ∆|
≥ |L| |S|

2

2Kk
.

The left-hand side is equal to∑
~a∈∆−∆

1L ◦ 1L(~a)1∆ ◦ 1∆(~a).

Since ∆−∆ is only supported on diagonal vectors, however, this is equal to∑
t∈S−S

1L ◦ 1L(t, . . . , t)1S ◦ 1S(t).

As noted above, if (t, . . . , t) ∈ L − L then t ∈ T , and since trivially 1L ◦ 1L ≤ |L|,
this is at most

|L|
∑

t∈S−S
1T (t)1S ◦ 1S(t) = |T | 〈1T , 1S ◦ 1S〉,

whence

〈1T , 1S ◦ 1S〉 ≥
1

2Kk
|S|2 ,

and the proof is complete, recalling our choice of k. �



CHAPTER 4

Inverse sumset results

In this final chapter we will prove one of the cornerstone results of additive
combinatorics, the Freiman-Ruzsa inverse sumset theorem. Roughly speaking, this
says that every A ⊂ Z with small doubling must be efficiently contained in a
(generalised) arithmetic progression.

We will state precisely what this means, and the theorem we will prove, below.
First, note that we have already proved something similar for subsets of Fnp in
Chapter 1: Theorem 1 says that if A ⊂ Fnp has doubling |A+A| ≤ K |A| then
there is some coset of a subgroup H such that A ⊂ H and |H| �p,K |A|.

This proof does not work in Z, or even in Z/NZ for N prime, because we crucially
used the fact that Fnp has bounded torsion. We will have to work a little harder to
obtain a result over the integers.

Inverse sumset results of this type, that say “if A has small doubling then we can
efficiently contain A in some structured object” are often referred to as Freiman-
Ruzsa results. The reason is that, for the integers, such results were first obtained
by Freiman in the 1960s, in work that was mostly overlooked at the time. Ruzsa
rediscovered inverse sumset results in the 1990s with a simpler proof that was much
more generalisable, and Ruzsa’s papers were among those that started the modern
age of additive combinatorics.

Before we state precisely the inverse result we will prove, we need to define
what the structured objects we will use are. We saw at the beginning of Chapter
1 that arithmetic progressions are classic examples of sets of integers with small
doubling. This quickly leads to other sets with small doubling, since as we have
seen, the sumset of two sets with small doubling also has small doubling. Thus the
correct notion of ‘structured sets’ is to consider all sets generated by taking sums
of arithmetic progressions, which leads to the notion of an ‘generalised arithmetic
progression’.

Just as an arithmetic progression is a translated and scaled copy of a 1-dimensional
interval in Z, a generalised arithmetic progression (often abbreviated to GAP) of
rank d is a translated and scaled copy of a d-dimensional cuboid.

56
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Definition 8 (Generalised Arithmetic Progressions). Let G be any abelian
group. A generalised arithmetic progression (GAP) of rank d is the sum set
of d arithmetic progressions P1 + · · ·+ Pd.
Equivalently, a GAP of rank d is a set P of the shape

P = {a+ n1v1 + · · ·+ ndvd : 0 ≤ ni < Ni for 1 ≤ i ≤ d}
for some N1, . . . , Nd ≥ 1 and a, v1, . . . , vd ∈ G. The volume of P is

∏
iNi,

and we say that P is proper if |P | =
∏
iNi. We say that P is symmetric if

P = −P .

We will first show that the space of GAPs is closed under addition and multipli-
cation, and that GAPs (of bounded rank) do indeed have small doubling.

Lemma 29. If P is a GAP of rank d then for any k, l ≥ 0, the set kP − lP is also
a GAP of rank d, and

|kP − lP | ≤ (k + l)d |P | .
In particular, |P + P | ≤ 2d |P |.

Proof. We can write explicitly

kP − lP = {(k − l)a− l((N1 − 1)v1 + · · ·+ (Nd − 1)vd) + n1v1 + · · ·+ ndvd :

0 ≤ ni < (k + l)Ni − (k + l) + 1}.
In particular, this is also a GAP of rank d. It is clear from this that kP − lP is
contained in the union of the translates

(k − l − 1)a− l(N1v1 + · · ·+Ndvd) + v′ + P,

where v′ ranges over all (k + l)d many sums of the form

d∑
i=1

ciNivi where ci ∈ {0, 1, . . . , k + l − 1}.

In particular, |kP − lP | ≤ (k + l)d |P | as required. �

In particular, we have the following trivial result.

Theorem 17. If P is a GAP of rank d and A ⊂ P with size |A| ≥ K−1 |P | then
|A+A| �K,d |A|.

Proof. This is just

|A+A| ≤ |P + P | ≤ 2d |P | ≤ 2dK |A| .
�

Our goal is the following converse result to this, that says that being contained
in a small GAP of low rank is in fact the only way a set of integers can have small
doubling!

Theorem 18 (Freiman-Ruzsa inverse theorem). Let K ≥ 4. If A ⊂ Z is a finite
set and |A+A| ≤ K |A| then there is a generalised arithmetic progression P of
rank OK(1) and size |P | �K |A| such that A ⊂ P .

We will prove the following strong quantitative version of this fact, which is due
to Sanders.
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Theorem 19 (Freiman-Ruzsa-Sanders quantitative inverse theorem). Let K ≥ 4.
If A ⊂ Z is a finite set and |A+A| ≤ K |A| then A ⊂ P for some GAP P of rank
at most K(logK)O(1), where

|A| ≥ 2−K(logK)O(1)

|P | .

The bounds we give here, due to Sanders, are essentially the best known (al-
though we have not bothered to keep track of the constant in the exponent of logK
– Sanders has shown one can take this to be arbitrarily close to 3). They are in
fact not too far off from the best possible bounds. Consider, for example, the case
when A = {1, 2, . . . , 2K−1}. Since |A| = K, we trivially have |A+A| ≤ K |A|.
There is not really any non-trivial way to contain A in a GAP, due to its geometric
growth. The obvious choice is the progression of rank 1 {1, 2, 3, . . . , 2K−1}, whjich
has size |P | � (2K/K) |A|. The bounds in Theorem 19 are only a power of logK
away from these best possible bounds. It is conjectured that one can replace these
(logK)O(1) factors by just an error O(1). This is one of the most important open
problems in additive combinatorics.

We will deduce Theorem 19 from the following result, which finds a large GAP
inside 4A− 4A. The elementary techniques from Chapter 1 will allow us to quickly
deduce the full Theorem 19.

Lemma 30 (Bogolyubov-Ruzsa Lemma). If K ≥ 4 and A ⊂ Z has |A+A| ≤
K |A| then 4A − 4A contains a proper GAP of rank O((logK)O(1)) and size �
exp(−O(logK)O(1)) |A|.

Proof of Theorem 19 assuming Lemma 30. Let |A+A| ≤ K |A|. By Lemma 30
there is a progression P of rank d� (logK)O(1) and size |P | � exp(−(logK)O(1)) |A|
such that P ⊂ 4A− 4A.

In particular, we also have a good upper bound for the size of P , since |P | ≤
|4A− 4A| ≤ K8 |A|, by Plünnecke’s inequality. We will now show that A is ef-
ficiently span-covered by P − P , using Lemma 10. For this we need to control
|A+ P |, which is easily done by Plünnecke again:

|A+ P | ≤ |5A− 4A| ≤ K9 |A| ≤ exp((logK)O(1)) |P | .

In particular, by Lemma 10, A is O(K(logK)O(1))-span covered by P − P . That
is, there are r � K(logK)O(1) many x1, . . . , xr (not necessarily distinct) such that

A ⊂ P − P + {c1x1 + · · ·+ crxr : −1 ≤ ci ≤ 1} = Q,

say. It is easy to see that, since P − P is a GAP of rank d, the right-hand side Q
is also a GAP of rank ≤ d+ r, and

|Q| ≤ |P − P | 3r ≤ 3r2d |P | ≤ exp(K(logK)O(1)) |A|

as required. (Note that since K ≥ 4 we can write O((logK)O(1)) as ≤ (logK)O(1)

by increasing the constant in the exponent if necessary.) �

The rest of this chapter will be spent developing the tools to prove Lemma 30,
which will use both almost-periodicity and Bohr sets. We will do this in three
stages:

(1) Reduce to a similar statement where instead of considering A ⊂ Z with
|A+A| ≤ K |A| we consider A ⊂ G with G a finite abelian group of order
N and |A| ≥ K−1N .
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(2) Use almost-periodicity and manipulations with the Fourier transform to
show that under these hypotheses 4A−4A contains a Bohr set of low rank.

(3) Use geometry of numbers to show that a Bohr set of low rank must contain
a GAP of low rank.

12. Freiman homomorphisms

When studying arithmetic progressions, we have already seen the necessity to
move from considering subsets of {1, . . . , N} to subsets of Z/MZ, in part so that we
could use Fourier analysis over finite abelian groups. We will need to do something
similar, but more involved, here.

We first introduce the notion of a ‘Freiman homomorphism’. Just as homo-
morphisms in group theory preserve the group structure (and so two isomorphic
groups are considered equivalent from the point of view of group theory), Freiman
homomorphisms preserve the kind of ‘approximate structure’ that is the subject
of additive combinatorics. We will then show that every set of integers with small
doubling is Freiman isomorphic to a large subset of a cyclic group.

Definition 9 (Freiman homomorphism). Let s ≥ 1. If A,B are subsets of
some (possibly distinct) abelian groups, then we say that a function φ : A→
B is a Freiman s-homomorphism if for any x1, . . . , xs, y1, . . . , ys ∈ A, if

x1 + · · ·+ xs = y1 + · · ·+ ys

then
φ(x1) + · · ·+ φ(xs) = φ(y1) + · · ·+ φ(ys).

We say that an s-homomorphism is an s-isomorphism, and then that A
and B are s-isomorphic, if φ is a bijection and its inverse is also an s-
homomorphism, so that the “if...then” above can be upgraded into an “if
and only if”.

• Every function is a 1-homomorphism. Every bijection is a 1-isomorphism.
• An s-homomorphism is automatically a t-homomorphism for any t ≤ s.
• If φ is an s-homomorphism then φ(x) + t is also an s-homomorphism, for

any t.
• Any constant shift of a group homomorphism is an s-homomorphism for

all s ≥ 1.
• If A and B are r-isomorphic with r = s(k + l) then kA− lA and kB − lB

are s-isomorphic.
• The property of being k-isomorphic is translation invariant, in that if A

and B are k-isomorphic then so are A+ x and B + y for any x, y.

An important example of a Freiman isomorphism is given by the quotient map,
which we have already used a couple of times implicitly. Let M ≥ 1, and consider
the quotient map φ : Z → Z/MZ. This is a group homomorphism, and hence in
particular is a s-homomorphism for any s ≥ 1.

More significantly, if M ≥ kN then φ is a k-isomorphism on {1, . . . , N}. Indeed,
if a1, . . . , ak, b1, . . . , bk ∈ {1, . . . , N} and a1 + · · ·+ak ≡ b1 + · · ·+ bk (mod M) then
a1 + · · · − bk is divisible by M , but it is in (−kN, kN), and hence is less than M in
absolute value, so must be equal to 0.
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In particular, any subset of {1, . . . , N} is k-isomorphic to a subset of Z/MZ for
any M ≥ kN .

Lemma 31. If A and B are r-isomorphic with r = s(k + l) then kA − lA and
kB − lB are s-isomorphic.

Proof. Let φ : A → B be a r-isomorphism. We define a new map φ′ : kA − lA →
kB − lB by

φ′(a1 + · · ·+ ak − ak+1 − · · · − ak+l) = φ(a1) + · · · − φ(ak+l).

This is well-defined since if a1 + · · · − ak+l = a′1 + · · · − a′k+l then φ(a1) + · · · −
φ(ak+l) = φ(a′1) + · · · − φ(a′k+l) since φ is, in particular a (k + l)-isomorphism. It
is straightforward to similarly check that φ′ is also a s-isomorphism. �

Lemma 32. If φ : A→ B is a 2-homomorphism and P ⊂ A is a GAP then φ(P )
is also a GAP of the same rank and volume. If φ is a 2-isomorphism then φ(P )
also has the same size. In particular, if P is proper then φ(P ) is also proper.

Proof. Let
P = {a+ n1v1 + · · ·+ ndvd : 0 ≤ ni < Ni}.

Since φ is a 2-homomorphism, for any 1 ≤ j ≤ d, whenever a + x + vj , a + x ∈ A,
we have

φ(a+ x+ vj) = φ(a+ x) + (φ(a+ vj)− φ(a)).

since we always have a, a + vj ∈ A as P ⊂ A. By induction, therefore, for any
0 ≤ ni < ni,

φ(a+n1v1 + · · ·+ndvd) = φ(a) +n1(φ(a+ v1)−φ(a)) + · · ·+nd(φ(a+ vd)−φ(a)).

Therefore,
φ(P ) = {φ(a) + n1w1 + · · ·+ ndwd : 0 ≤ ni < Ni}

where wj = φ(a+vj)−φ(a). This is a progression with the same rank and volume.
If φ is an 2-isomorphism, then in particular it is a bijection, and so |φ(P )| = |P |. �

Any finite A ⊂ Z is k-isomorphic to a subset of Z/NZ for some N – indeed, if
A ⊂ [−M,M ], then by translation invariance and the above reduction map, we see
that A is k-isomorphic to a subset of Z/NZ for any N ≥ k(2M + 1). This might
be a very poor bound in general, however – if A is very widely scattered amongst
the integers then M might be much larger than the size of A. It is far more useful
if we can find some N such that A is k-isomorphic to a large subset of Z/NZ.

The following modelling lemma, due to Ruzsa, gives us such an isomorphism,
provided we have some control over the size of the sumsets of A, and further pro-
vided that we are willing to pass to some reasonably large subset of A.

Lemma 33 (Ruzsa modelling lemma). Let A ⊂ Z be a finite subset and k ≥ 2.
Suppose that |A+A| ≤ K |A|. Then there is some prime N and A′ ⊂ A with
|A′| ≥ |A| /k such that A′ is k-isomorphic to a subset of Z/NZ of size ≥ N/(2kK2k).

Proof. We will show that for any N ≥ |kA− kA| there is a set A′ ⊂ A with
|A′| ≥ |A| /k such that A′ is k-isomorphic to a subset of Z/NZ. The lemma then
follows from Plünnecke’s inequality, which implies that |kA− kA| ≤ K2k |A|, and
Bertrand’s postulate.

Our isomorphism will be φ : A→ Z/NZ defined by

φ(x) = bξxc (mod N),
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where ξ ∈ [0, N ] is some fixed real number and b·c is the floor function, rounding
down to the nearest integer. The set A′ will be one of

Aj =

{
x ∈ A : {ξa} ∈

[
j − 1

k
,
j

k

)}
for 1 ≤ j ≤ k, where {t} = t − btc is the fractional part. We will show that there
exists ξ such that φ restricted to each Aj is a k-isomorphism, and clearly at least
one of them has at least |A| /k members.

To show that φ is a k-isomorphism, we require that (with 1 ≤ j ≤ k fixed) for
any a1, . . . , bk ∈ Aj ,
(3) a1 + · · ·+ ak = b1 + · · ·+ bk

if and only if

(4) bξa1c+ · · ·+ bξakc ≡ bξb1c+ · · ·+ bξbkc (mod N).

We first note that, for any ξ ∈ R, since t = btc+ {t} for any t ∈ R, we have∑
1≤i≤k

(bξaic − bξbic) = ξ
∑

1≤i≤k

(ai − bi)−
∑

1≤i≤k

({ξai} − {ξbi}).

Furthermore, since all ai, bi ∈ Aj for some fixed j, all of the fractional parts on the
right-hand side lie in the same interval [u, u + 1/k) for some u. In particular, the
sum of the fractional parts must lie in (−1, 1), and so we have∑

1≤i≤k

(bξaic − bξbic) = ξ
∑

1≤i≤k

(ai − bi) + δ

for some δ ∈ (−1, 1). One direction of the isomorphism is now immediate: if (3)
holds then the first sum vanishes and the right-hand side is just δ, but since the
left-hand side is an integer we must have δ = 0, and hence (4) holds. Note that
this is true for any choice of ξ.

On the other hand, if (4) holds, then we have mN = ξt+δ for some t ∈ kA−kA
and m ∈ Z. If t = 0 then (3) holds as required. Otherwise, ξ = (mN − δ)/t. It
therefore suffices to choose any ξ ∈ R that lies outside the union of⋃

t∈(kA−kA)\{0}

⋃
m∈Z

(
mN − 1

t
,
mN + 1

t

)
.

We will in fact show that there is some ξ ∈ [0, N ] which is left uncovered.
We first estimate the measure of what is excluded for any fixed t > 0. If 1 ≤

m < t then trivially the interval (mN − 1/t,mN + 1/t) excludes at most 2/t from
[0, N ]. For m = 0, note that the measure of (−1/t, 1/t)∩ [0, N ] is 1/t, and similarly
for m = t. Otherwise, if m < 0 or m > t then the interval (mN − 1/t,mN + 1/t)
has empty intersection with [0, N ]. In total, therefore, the amount excluded from
[0, N ] has measure at most

(t− 1)
2

t
+

1

t
+

1

t
= 2.

Finally, we note that kA − kA is symmetric, and the set of excluded intervals
from −t is identical to that of t. Therefore the total mass excluded from [0, N ] is
at most (summing the total excluded measure for all t ∈ (kA− kA) ∩ R>0)

|kA− kA| − 1

2
· 2 < N,
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by assumption, and hence there is some ξ ∈ [0, N ] left uncovered, Any such ξ yields
a suitable k-isomorphism. �

We will now use Ruzsa’s modelling lemma to show that, when proving the
Bogolyubov-Ruzsa lemma, Lemma 30, instead of considering A ⊂ Z with |A+A| �
|A|, we can instead consider A ⊂ Z/NZ with N prime and |A| � N . Namely, we
will actually prove the following.

Lemma 34 (Bogolyubov-Ruzsa Lemma, Dense version). Let K ≥ 4 and N be
prime. Suppose that A ⊂ Z/NZ has size |A| ≥ K−1N . Then 4A − 4A contains a
proper GAP of rank O((logK)O(1)) and size � exp(−(logK)O(1))N .

We will prove this in the next two sections, and we now use Ruzsa’s modelling
lemma to show how Lemma 30 follows.

Proof of Lemma 30 assuming Lemma 34. Let A ⊂ Z be such that |A+A| ≤ K |A|.
By Lemma 33 there is some prime N and A′ ⊂ A with |A′| ≥ |A| /16 such that A′

is 16-isomorphic to a subset of Z/NZ, say B, where |B| ≥ N/32K32.
We now apply Lemma 34 to B (with K replaced by 32K32). In particu-

lar, there is a proper GAP P inside 4B − 4B of rank O((logK)O(1)) and size
� exp(−(logK)O(1))N .

By Lemma 31, however, 4B−4B is 2-isomorphic to 4A′−4A′, and 2-isomorphisms
preserve both the rank and size of GAPs by Lemma 32, and so the image of P
under this isomorphism yields a proper GAP of the same rank and size inside
4A′ − 4A′ ⊂ 4A− 4A, as required. �

13. Finding a large Bohr set inside 2A− 2A

We now need to do the following: given A ⊂ Z/NZ which is large |A| � N , find
a large GAP inside 4A+ 4A. We will do this in two stages: first find a large Bohr
set (with small rank) inside 4A − 4A, and then show that Bohr sets contain large
GAPS. In this section we address the first task, in which almost-periodicity plays
a starring role.

We will first use almost-periodicity to find a large set X such that every element
of kX is a ‘popular’ element of 2A − 2A. (Compare this to Theorem 13, which
showed, under the assumption of small doubling, that kX ⊂ 2A − 2A - the proof
here is a simple modification.)

Lemma 35. Let k ≥ 1 and K ≥ 4. If A ⊂ Z/NZ with |A| ≥ N/K then there is
some set X such that

|X| ≥ exp(−O(k2(logK)2))N

and if x ∈ kX then
1A−A ∗ 1A ◦ 1A(x) ≥ 1

2 |A|
2
.

In particular, kX ⊂ 2A−2A. (In other words, not only is every t ∈ kX an element
of A + A − A − A, but there are many triples a ∈ A − A and b, c ∈ A such that
a+ b− c = t.)

Proof. We apply Theorem 11 with B = A − A, and ε > 0 and m ≥ 1 to be
chosen soon. Let X be the corresponding set of almost-periods. Since addition of
almost-periods adds the errors, kX is a subset of the set of L2m-almost-periods for

1A ∗ 1A−A with error kε |A| |A−A|1/2m, that is, for any x ∈ kX, we have

‖τx(1A ∗ 1A−A)− 1A ∗ 1A−A‖2m ≤ kε |A| |A−A|1/2m .
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Suppose for a contradiction that there is some x ∈ kX such that

1A−A ∗ 1A ◦ 1A(x) < 1
2 |A|

2
.

Then

1
2 |A|

2
>
∑
a,b∈A

∑
c∈A−A

1a−b−c=x

=
∑
a∈A

∑
b∈A

∑
c∈A−A

1b+c=a−x

= 〈1A, τx(1A ∗ 1A−A)〉.
On other hand, we have

〈1A, 1A ∗ 1A−A〉 =
∑
a,b∈A

∑
c∈A−A

1a−b=c = |A|2 .

Taking the difference,

|〈1A, (τx(1A ∗ 1A−A)− 1A ∗ 1A−A)〉| ≥ 1
2 |A|

2
.

On the other hand, by Hölder’s inequality, the left-hand side is at most

|A|1−1/2m ‖τx(1A ∗ 1A−A)− 1A ∗ 1A−A‖2m ≤ kε |A|2 (|A−A| / |A|)1/2m.

By Plünnecke’s inequality |A−A| ≤ K2 |A|, and hence if we choose m = dlogKe,
then the right-hand side is at most ekε |A|2. Choosing ε = 1/4ek, say, gives a
contradiction.

Thus the theorem is proved, since the size of X is

|X| ≥ K−O(mε−2)N ≥ exp(−O(k2(logK)2))N.

�

The idea will be to choose the Bohr set to annihilate those characters where |1̂X |
is large (say ≥ 1

2 |X|). To ensure that this is low rank, we first need to make sure
we control the ‘dimension’ of the set of such characters. The following lemma was
first proved (actually in a slightly stronger form) by Chang.

Lemma 36 (Weak Chang dimension bound). Let N be prime. Let X ⊂ Z/NZ
with density δ = |X| /N . There is a multiset Γ such that |Γ| � (log(1/δ))3 and

{γ : |1̂X(γ)| ≥ 1
2 |X|} ⊂ Span(Γ).

For comparison, note that by Parseval’s identity, if ∆ is the set of characters in
question, then

1
4 |X|

2 |∆|
N
≤E

γ

|1̂X(γ)|2 = |X|

by Parseval’s identity, whence |∆| ≤ 4δ−1. Chang’s lemma tells us that if we’re
only concerned about the ‘dimension’ of ∆, rather than its size, we can replace this
δ−1 by a power of log(1/δ). (The full Chang’s lemma in fact allows one to take
|Γ| � log(1/δ).)

Proof. Let m ≥ 1 be some large integer, to be chosen later. Let ∆ be the set of
characters in question, and suppose Γ0 ⊂ ∆ is maximal such that the only solutions
to

(5) γ1 + · · ·+ γm = γ′1 + · · ·+ γ′m
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are the trivial ones with {γ1, . . . , γm} = {γ′1, . . . , γ′m}. Then if E2m(Γ0) counts the
number of solutions to (5) with the variables coming from Γ0, we have E2m(Γ0) ≤
m! |Γ0|m.

We will compare this to a lower bound on E2m(Γ0) coming from Hölder’s in-
equality. We have

1
2 |X| |Γ0| ≤

∑
γ∈Γ0

|1̂X(γ)| =
∑
γ∈Γ0

cγ
∑
x∈X

γ(x) =
∑
x∈X
E
γ

cγγ(x),

where cγ ∈ C are some suitable signs chosen such that |1̂X(γ)| = cγ 1̂X(γ). By
Hölder’s inequality, the right-hand side is at most

|X|1−1/2m

∑
x

∣∣∣∣∣∣
∑
γ∈Γ0

cγγ(x)

∣∣∣∣∣∣
2m


1/2m

.

Expanding out the power and changing the order of summation,

∑
x

∣∣∣∣∣E
γ

cγγ(x)

∣∣∣∣∣
2m

=
∑

γ1,...,γ2m∈Γ0

cγ1 · · · cγ2m
∑
x

(γ1 + · · · − γ2m)(−x).

By orthogonality, the sum over x is 0 unless γ1 + · · · − γ2m = 0, when it is = N .
By the triangle inequality, therefore, (since |cγ | = 1),

1
2 |X| |Γ0| ≤ |X|1−1/2m

 ∑
γ1,...,γ2m∈Γ0

1γ1+···−γ2m=0

1/2m

N1/2m.

The sum over γi is exactly E2m(Γ0). Hence, rearranging this inequality, and using
the above upper bound, we have

2−2mδ |Γ0|2m ≤ E2m(Γ0) ≤ m! |Γ0|m ≤ mm |Γ0|m .

In particular,

|Γ0| ≤ 4mδ−1/m � log(1/δ)

if we choose m = dlog(1/δ)e.
If λ ∈ ∆\Γ0, then by maximality, there is some solution to

γ1 + · · ·+ γm = γ′1 + · · ·+ γ′m

with γi, γ
′
i ∈ Γ0 ∪ {λ} where the right-hand side is not a permutation of the left-

hand side. If there is an equal number of λ on both sides of this equation then, by
cancelling them and replacing them by some arbitrary γ ∈ Γ0, we have a non-trivial
solution to (5) with variables all in Γ0, which is a contradiction.

Hence, by rearranging this, we have

tλ =
∑
γ∈Γ0

aγγ

where 1 ≤ t ≤ m and aγ ∈ Z satisfy |aγ | ≤ m. Since t ≤ m ≤ dlog(1/δ)e ≤
dlogNe < N , and N is prime, we can multiply both sides by t−1 to see that

λ =
∑
γ∈Γ0

aγ(t−1γ).
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The proof is complete, if we let Γ be the union of all aγt
−1γ as γ ranges over Γ0.

Since there are O(m2) many choices for aγ and t−1, we have |Γ| � m2 log(1/δ)�
log3(1/δ) as required. �

Lemma 37. If N is prime and K ≥ 4, and A ⊂ Z/NZ with |A| ≥ N/K then there
is a Bohr set B of rank O((logK)O(1)) and width � K−2 such that B ⊂ 4A− 4A.

Proof. Let X be the set given by Lemma 35 with k ≥ 1 some parameter to be
chosen later, so that

|X| ≥ exp(−O(k2(logK)2))N

and if x ∈ kX then

1A−A ∗ 1A ◦ 1A(x) ≥ 1
2 |A|

2
.

In particular, since 1
(k)
X (the k-fold iterated convolution) is supported on kX, we

have

(6) 〈1A−A ∗ 1A ◦ 1A, 1
(k)
X 〉 ≥

1
2 |A|

2
∑
x

1
(k)
X (x) = 1

2 |A|
2 |X|k .

Let δ = |X| /N and ∆ = {γ : |1̂X(γ)| ≥ 1
2 |X|}, and let Γ be a multiset

of size O(log3(1/δ)) such that ∆ ⊂ Span(Γ), as given by Lemma 36. Let B =
Bohr(Γ; ρ/ |Γ|) (where we replace the multiset Γ with just its underlying set), with
ρ > 0 some parameter which we will choose later (it will end up as ρ = 1/8K). We

note that for any λ1, λ2 ∈ Ĝ and any t ∈ G, by the triangle inequality,

|1− (λ1 + λ2)(t)| ≤ |1− λ1(t)|+ |λ1(t)− λ1(t)λ2(t)| = |1− λ1(t)|+ |1− λ2(t)|.

It follows by induction on k that for any λ1, . . . , λk and t∣∣∣∣∣1−
(∑

i

λi

)
(t)

∣∣∣∣∣ ≤∑
i

|1− λi(t)| .

In particular, for any γ ∈ ∆, writing

γ =
∑
λ∈Γ

cλλ

for some cλ ∈ {−1, 0, 1}, and any t ∈ B,

|1− γ(t)| ≤
∑
λ∈Γ

|1− λ(t)| ≤ ρ.

We claim that B ⊂ 2A− 2A+ kX. Indeed, by Fourier inversion,

1A−A ∗ 1A ◦ 1A ∗ 1
(k)
X (t) =E

γ

1̂A−A(γ)
∣∣∣1̂A(γ)

∣∣∣2 1̂X(γ)kγ(t).

Without the γ(t), this is

E
γ

1̂A−A(γ)
∣∣∣1̂A(γ)

∣∣∣2 1̂X(γ)k = 〈1A−A ∗ 1A ◦ 1A, 1
(k)
X 〉 ≥

1
2 |A|

2 |X|k .

It follows that∣∣∣1A−A ∗ 1A ◦ 1A ∗ 1
(k)
X (t)− 1

2 |A|
2 |X|k

∣∣∣ ≤E
γ

∣∣∣1̂A−A(γ)
∣∣∣ ∣∣∣1̂A(γ)

∣∣∣2 ∣∣∣1̂X(γ)
∣∣∣k |γ(t)− 1| .
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In particular, if t 6∈ 2A − 2A + kX then, trivially bounding
∣∣∣1̂A−A∣∣∣ ≤ |A−A| ≤

N ≤ K |A|, we have

1
2K |A| |X|

k ≤E
γ

∣∣∣1̂A(γ)
∣∣∣2 ∣∣∣1̂X(γ)

∣∣∣k |γ(t)− 1| .

We will obtain a contradiction by upper bounding the right-hand side. Firstly,

consider the contribution from γ 6∈ ∆. Then
∣∣∣1̂X(γ)

∣∣∣ ≤ |X| /2 for such γ, and so

this part contributes (using the trivial |γ(t)− 1| ≤ 2)

≤ 21−k |X|kE
γ

∣∣∣1̂A(γ)
∣∣∣2 = 21−k |X|k |A| ,

by Parseval’s identity. On the other hand, if γ ∈ ∆, then as discussed above,
we have |γ(t)− 1| ≤ ρ, and so this part contributes (using again a trivial bound∣∣∣1̂X(γ)

∣∣∣ ≤ |X|)
≤ ρ |X|k |A| .

Putting our two upper bounds together, we have

1
2K |A| |X|

k ≤ (21−k + ρ) |X|k |A| .

Thus we get a contradiction if we choose ρ = 1/8K and k = 100dlogKe, say. In
particular we have a Bohr set B with B ⊂ 2A− 2A+ kX ⊂ 4A− 4A as required,
where the rank of B is

� log(1/δ)3 � k6(logK)6 � (logK)12

and the width of B is

ρ/ |Γ| � K−1(logK)−12 � K−2.

�

We have made excellent progress towards proving the Freiman-Ruzsa-Sanders
inverse theorem. We have found a large Bohr set B inside 4A− 4A. It remains to
show that 4A− 4A contains a large GAP, which we will do so by showing that, in
general, Bohr sets contain large GAPs. For this we will undertake a brief digression
into the geometry of numbers.

14. Geometry of Numbers and Progressions in Bohr sets

We have already seen that a Bohr set in Z/NZ of rank d and width ρ contains
an arithmetic progression of length � ρN1/d. This is just a 1-dimensional object,
and we might hope that if we’re considering generalised arithmetic progressions we
should be able to do much better. Indeed, since a Bohr set of rank d is the inverse
image of a d-dimensional cube, it is natural to search for a d-dimensional GAP
inside a Bohr set of rank d.

The proof is a little delicate, however, and in particular a simple ‘greedy’ con-
struction will not work. The best way to proceed is via the geometry of numbers,
and old and fascinating subject.
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Definition 10 (Lattices). A lattice L ⊂ Rd of rank k is a set of the form

L =

{
k∑
i=1

aivi : ai ∈ Z

}
where v1, . . . , vk are some k linearly independent vectors in Rd. (One can
show this is equivalent to defining a lattice to be any discrete additive sub-
group of Rd, but we will not need this here.) Given a lattice L we define its
fundamental parallelepiped to be

FP (L) =

{
k∑
i=1

civi : ci ∈ [0, 1)

}
.

The (Lebesgue) measure of FP (L) is called the covolume of L, and is de-
noted by µ(Rd/L). (Note that the covolume of L is zero if k < d.)

Lemma 38 (Blichfeldt’s Lemma). If L ⊂ Rd is a lattice of rank d and V ⊂ Rd has
µ(V ) > µ(Rd/L) then there are distinct x, y ∈ V such that x− y ∈ L.

Proof. Let Q = FP (L). For x ∈ L consider the set V ∩ (Q+x). Since all translates
(Q+ x)x∈L are disjoint, and cover all of Rd, we have∑

x∈L
µ(Q ∩ (V − x)) =

∑
x∈L

µ(V ∩ (Q+ x)) = µ(V ) > µ(Q).

It follows that the translates Q∩(V −x) cannot be disjoint, and hence in particular
two of the translates V − x must overlap, and there are (distinct) v1, v2 ∈ V and
x1, x2 ∈ L such that v1−x1 = v2−x2, where x1 6= x2. Then v1− v2 = x1−x2 ∈ L
as required. �

Lemma 39 (Minkowski’s First Theorem). If V is a symmetric convex set and
L ⊂ Rd is a lattice of rank d then, provided µ(V ) > 2dµ(Rd/L), the set V must
contain a non-zero point of L.

Proof. We apply Blichfeldt’s lemma to the set 1
2 · V , which has measure 2−dµ(V ).

This gives us v1, v2 ∈ V such that 1
2 (v1 − v2) ∈ L\{0}. By the symmetry and

convexity of V , 1
2 (v1 − v2) ∈ V , and we are done. �

Minkowski’s first theorem is very useful in finding a single lattice vector inside
some given symmetric convex set. In particular, it tells us what radius ball around
the origin we need before we can guarantee a single non-zero lattice vector. What
if we want more? In particular, how large a ball around the origin do we need to
take before we can find d linearly independent vectors in L?

The answer is given by Minkowski’s second theorem, and the concept of succes-
sive minima. Roughly speaking, these measure how large a ball we need to take
around the origin before we are guaranteed to find first one, then two, and so on,
linearly independent lattice vectors.
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Definition 11 (Successive minima). If L ⊂ Rd is a lattice of rank d then
we define the successive minima 0 < λ1 ≤ · · · ≤ λd < ∞ with respect to
L by setting λk to be the infimum of all λ > 0 such that there k linearly
independent v1, . . . , vk ∈ L such that |vi| < λ.
It is easy to check that this definition makes sense, in that the successive
minima are finite and non-zero. (In fact one can define successive minima
with respect to L for any convex body B, but we will only explore the
simplest case presented here, which corresponds to taking B to be the unit
sphere.)

For example, Minkowski’s first theorem tells us that λd1µ(Bd) ≤ 2dµ(Rd/L),
where Bd is the unit ball around the origin in d dimensions. The volume of the
unit ball can, of course, be calculated explicitly, but since we do not care too much
about precise bounds, we use the simple fact that

µ(Bd) ≥ 2dd−d/2,

which follows from the fact that it contains the cube [−1/
√
d, 1/
√
d]d. We deduce

that λ1 ≤ d1/2µ(Rd/L)1/d. Obtaining similar upper bounds on the individual λi is
more difficult, but Minkowski’s second theorem gives us, quite incredibly, the same
upper bound on their geometric mean (λ1 · · ·λd)1/d. The basic idea of the proof
is to transform the lattice (roughly by dilating each direction by λ−1

i ) into another
for which the unit ball contains no non-zero lattice vectors, and apply Minkowski’s
first theorem.

Lemma 40 (Minkowski’s second theorem). If L ⊂ Rd is a lattice of rank d and
0 < λ1 ≤ · · · ≤ λd are the successive minima with respect to L, then

(1) there exist d linearly independent vectors (called the directional basis) v1, . . . , vd ∈
L such that |vj | = λj and if x ∈ L satisifes |x| < λj then x is in the R-span
of {v1, . . . , vj−1}, and

(2)

λ1 · · ·λd ≤ 2d
µ(Rd/L)

µ(Bd)
,

where Bd is the unit sphere in Rd.

In particular, λ1 · · ·λd ≤ dd/2µ(Rd/L).

Proof. The first part follows almost immediately from the definition of successive
minima. Indeed, suppose that µ1 < · · · < µl are the distinct values taken on by
the successive minima, and that 1 ≤ k1 < · < kl = d are such that µi = λki−1+1 =
· · · = λki . We claim that by induction on i we can find linearly independent
vki−1+1, . . . , vki ∈ L such that (with k0 = 0 and kl+1 =∞)

(1)
∣∣vki−1+1

∣∣ = · · · = |vki | = µi and
(2) x ∈ L that satisfies |x| < µi+1 must be in the span of v1, . . . , vki .

The case i = 1 is clear, since for any λ < µ1, there are no non-zero elements x ∈ L
such that |x| < λ, but for any µ2 > λ > µ1 there are least k1 linearly independent
vectors x ∈ L such that |x| < λ. It follows immediately that there must be at least
k1 linearly independent vectors v1, . . . , vk1 such that |v1| = · · · = |vk1 | = µ1. Point
(2) follows since otherwise we could find k1 + 1 linearly independent vectors x ∈ L
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satisfying |x| < µ2 = λk1+1, which would contradict the definition of λk1+1. The
general case follows similarly, and thus we have the first part.

By the Gram-Schmidt process (or general first year linear algebra) there exists
an orthonormal basis w1, . . . , wd of Rd such that vj is in the R-span of {w1, . . . , wj}.
Suppose

vj =

j∑
i=1

tjiwi

for some tji ∈ R. The key observation is that if we define

v′j =
∑
i≤j

tjiλ
−1
i wi

then for any integers u1, . . . , ud not all zero,

(7)
∣∣∣∑ujv

′
j

∣∣∣2 =
∑
i

∑
j≥i

ujλ
−1
i tji

2

≥ 1,

and so in particular the lattice L′ generated by these v′i (which is clearly of full
rank) has no non-zero vectors inside the unit ball Bd. By Minkowski’s first theo-
rem, therefore, µ(Rd/L′) ≥ 2−dµ(Bd). On the other hand, the fundamental par-
allelepiped spanned by v′i is obtained by transforming that spanned by vi under a
linear transformation similar to the diagonal matrix with entries λ−1

1 , . . . , λ−1
d , and

hence

2−dµ(Bd) ≤ µ(Rd/L′) = (λ1 · · ·λd)−1µ(Rd/L)

as required.
It remains to check (7). Let u1, . . . , ud be any integers, not all zero. Let 1 ≤ J ≤ d

be such that uJ 6= 0 and uj = 0 for j > J . Then u1v1 + · · ·+ udvd is a vector in L
which is linearly independent of v1, . . . , vJ−1, and so

|u1v1 + · · ·+ udvd| ≥ λJ .
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It follows that, using the orthonormality of the wi,

∣∣∣∑ujv
′
j

∣∣∣2 =

∣∣∣∣∣∣
d∑
j=1

∑
i≤j

ujtjiλ
−1
i wi

∣∣∣∣∣∣
2

=
∑
i

λ−2
i

∑
j≥i

ujtji

2

=
∑
i≤J

λ−2
i

∑
j≥i

ujtji

2

≥
∑
i≤J

λ−2
J

∑
j≥i

ujtji

2

= λ−2
J

∣∣∣∣∣∣
∑
j

ujvj

∣∣∣∣∣∣
2

≥ 1

as required. �

With Minkowski’s second theorem, we can now prove that Bohr sets in Z/NZ
(for N prime) contain large GAPs.

Lemma 41. If N is prime and B is a Bohr set in Z/NZ of rank d ≥ 1 and width ρ,
then B contains a symmetric proper progression P of rank at most d and cardinality

|P | ≥
(ρ
d

)O(d)

N.

We remark that in fact one can prove a sharper lower bound of (ρ/cd)dN for
some constant c > 0, if one uses a slightly stronger version of Minkowski’s second
theorem, but this version is sufficient for our purposes.

Proof. Let B = Bohr(Γ, ρ), where Γ is a set of characters that we can identify
with elements of Z/NZ. Without loss of generality we can assume that 0 6∈ Γ,
and furthermore we may assume that 1 ∈ Γ, since dilating the set of characters
corresponds to dilating B, and the rank and size of a GAP is preserved under
dilation (we are using crucially that N is prime here).

Let Γ = {γ1, . . . , γd}, therefore, where γ1, . . . , γd ∈ {1, . . . , N} and γ1 = 1. We
begin by recalling that, in the cyclic group Z/NZ, using the fact that |e(x)− 1| ≤
2π‖x‖, where ‖x‖ is the distance of x from the nearest integer, and the explicit

description of characters in Z/nZ as corresponding to x 7→ e2πi γxN , we know that B
contains

B′ = {x : xγi ≡ mi (mod N) for some |mi| ≤ ρ
2πN}.

We will therefore concentrate on finding a large GAP inside B′.
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Let L be the lattice in Rd spanned by the columns of
γ1/N 0 · · · 0
γ2/N 1 · · · 0

...
. . .

γd/N 0 · · · 1

 .

Since 
1
0
...
0

 = N


γ1/N
γ2/N

...
γd/N

− γ2


0
1
...
0

− · · · − γd


0
0
...
1

 ,

it is clear that in fact L = Zd + Z · (γ1/N, . . . , γd/N). Let 0 < λ1 ≤ · · · ≤ λd
be the successive minima with respect to L, with corresponding directional basis
v1, . . . , vd. A straightforward determinant calculation shows that µ(Rd/L) = 1/N ,
and therefore by Minkowski’s second theorem,

λ1 · · ·λd ≤ dd/2N−1.

(Note also that clearly the unit ball contains d linearly independent vectors from
L, and so λi ≤ 1 for all i.)

For each 1 ≤ i ≤ d, since vi ∈ L, there must exist some wi ∈ Z/NZ such that
vi ∈ wi

N (γ1, . . . , γd) + Zd. Let Ni = bρ/2πdλic, and define the progression P to be

P = {n1w1 + · · ·+ ndwd : |ni| ≤ Ni}.

This is a generalised arithmetic progression of rank d and volume
∏d
i=1(2Ni + 1).

To get a lower bound on the volume of P , we note that for all x ≥ 0, we have
2bxc+ 1 ≥ x. Thus the volume of P is∏

i

(2Ni + 1) ≥ (ρ/2πd)d
∏
i

λ−1
i ≥ (ρ/2πd3/2)dN ≥ (ρ/d)3dN,

say.
It remains to check that P ⊂ B′ and that P is proper (whence its volume will

equal its size). For the first, suppose that x = n1w1 + · · ·+ ndwd ∈ P . Let γj ∈ Γ.
Then

γjx = n1(γjw1) + · · ·+ nd(γjwd).

We know that for all 1 ≤ i ≤ d, |vi| = λi, and so there is some integer vector a ∈ Zd
such that

|(γ1wj , . . . , γdwj)− aN | = N |vj | = λjN.

In particular, since |(x1, . . . , xd)| ≥ |xi|, for any 1 ≤ i, j ≤ d, the integer γiwj is
congruent modulo N to some mij such that |mij | ≤ λjN . It follows that γix is
congruent to some mi such that

|mi| = |n1mi1 + · · ·+ ndmid| ≤
d∑
j=1

Nj |mij | ≤
d∑
j=1

(ρ/2πdλj)λjN ≤ ρ
2πN,

and hence x ∈ B′ as required.
Finally, we need to check that P is proper. If not, there must exist some ni with

|ni| ≤ 2Ni, not all zero, such that

x = n1w1 + · · ·+ ndwd ≡ 0 (mod N).
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It follows that, if v = n1v1 + · · ·+ ndvd,

v ∈ n1w1 + · · ·+ ndwd
N

(γ1, . . . , γd) + Zd ∈ Zd.

On the other hand, we have

|v| ≤
∑
i

|ni| |vi| ≤ 2
∑
i

Niλi ≤ ρ/π < 1,

and so we have v = 0. This means that n1v1 + · · · + ndvd = 0, which contradicts
the linear independence of the vi. Thus P is proper, and the proof is complete. �

We can now finish the proof of the dense Bogolyubov-Ruzsa lemma, and thus
the proof of the Freiman-Ruzsa-Sanders inverse theorem.

Proof of Lemma 34. Let A ⊂ Z/NZ with |A| ≥ N/K. By Lemma 37 there is a
Bohr set B of rank d� (logK)O(1) and width ρ� K−O(1) such that B ⊂ 4A−4A.
By Lemma 41 B contains a proper GAP of rank � (logK)O(1) and cardinality

≥ (ρ/d)O(d)N � exp(−O((logK)O(1))N

as required. �

We have now finished the proof of the Freiman-Ruzsa-Sanders inverse result.
Let’s summarise the route. We began with some A ⊂ Z such that |A+A| ≤ K |A|.

(1) We then applied the Ruzsa modelling lemma to find some A′ ⊂ Z/NZ
(where N � KO(1) |A| is prime) such that |A′| ≥ N/KO(1) and 4A′ − 4A′

is 2-isomorphic to a subset of 4A− 4A.
(2) We then applied almost-periodicity to find some X such that

|X| � exp(−O((logK)O(1)))N

and kX is contained ‘popularly’ inside 2A′ − 2A′, where k ≈ logK.
(3) We then used a Fourier argument to show that the Bohr set which with

frequency set ∆ = {γ : |1̂X(γ)| ≥ 1
2 |X|} and width � K−O(1) must be

inside 2A′ − 2A′ + kX ⊂ 4A′ − 4A′.
(4) Chang’s dimension bound tells us this Bohr set has rank� (log |X| /N)O(1) �

(logK)O(1), so we have found a Bohr set with rank� (logK)O(1) and width
� K−O(1) inside 4A′ − 4A′.

(5) Finally, the geometry of numbers allows us to find inside this Bohr set
(and hence inside 4A′ − 4A′) a GAP with rank � (logK)O(1) and size
� exp(−(logK)O(1)))N � exp(−(logK)O(1))) |A|.

(6) This is inside 4A′− 4A′, which is 2-isomorphic to a subset of 4A− 4A, and
hence taking the image of the progression under this 2-isomorphism finds
a GAP P of the same rank and size inside 4A− 4A.

(7) Finally, elementary sumset inequalities imply that |P +A| ≤ exp(O(logK)O(1)) |P |,
and so there are many A is O(K(logK)O(1) span-covered by P −P . Taking
P − P together with this span yields a GAP Q of rank O(K(logK)O(1))
and size ≤ exp(K(logK)O(1)) |A| such that A ⊂ Q, which is the inverse
sumset theorem.

If instead we apply Ruzsa’s covering lemma in step 7, we can find a progression
which efficiently covers A. By the pigeonhole principle at least one translate of this
progression has a large intersection with A. More precisely, we have the following.
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Theorem 20 (Freiman-Ruzsa-Sanders inverse theorem, Version 2). If A ⊂ Z has
|A+A| ≤ K |A| then there is a proper GAP P of rank � (logK)O(1) and size
|P | � KO(1) |A| such that

|A ∩ P | � exp(−O((logK)O(1))) |A| .
Proof. By Lemma 30 there is a proper GAP P inside 4A−4A of rank O((logK)O(1))
and size � exp(−O((logK)O(1)))|A|.

If
P = {a+ n1v1 + · · ·+ ndvd : 0 ≤ ni < Ni}

then let P ′ be the same progression with Ni replaced by bNi/2c. It is easy to
check that P being proper guarantees that P ′ − P ′ is also proper, and moreover
|P ′| ≥ 2−d |P |.

Note that by the Plünnecke inequality |P ′| ≤ |4A− 4A| ≤ K8 |A|. Furthermore,

|A+ P ′| ≤ |5A− 4A| ≤ K9 |A| ≤ exp((logK)O(1)) |P ′| .
It follows that A is exp((logK)O(1))-covered by P ′ −P ′, which is a proper GAP of
the required rank and size.

That is, if Q = P ′ − P ′ there is some X of size X ≤ exp((logK)O(1)) such that
A ⊂ Q+X. By the pigeonhole principle there exists some x ∈ X such that

|A ∩ (Q+ x)| ≥ 1

|X|
|A| ≥ exp(−(logK)O(1)) |A|

as required. �

It is tempting to conjecture that the O(1) in the exponent of logK to be 1 –
but this turns out to be false in this formulation! This was only recently shown
by Lovett and Regev in 2017. The ‘correct’ conjecture is probably to allow for an
expanded notion of GAP where we replace the ‘cube constraint’ 0 ≤ ni < Ni by a
more flexible (n1, . . . , nd) ∈ B for some convex body B.

We conclude this chapter with a sample application of the inverse theorem, yet
another demonstration of how various notions of ‘additively structured’ are related.

Theorem 21. Let δ > 0 and k ≥ 1. If |A| is sufficiently large (depending on δ and

k) and A contains at least δ |A|2 many three-term arithmetic progressions then A
contains a (non-trivial) k-term arithmetic progression.

In the proof we will require another deep result we have already mentioned, but
sadly have not had the time to prove!

Theorem 22 (Szemerédi). For any δ > 0 and k ≥ 1 if N ≥ N0(δ, k) is sufficiently
large and A ⊂ {1, . . . , N} has size |A| ≥ δN then A contains a (non-trivial) k-term
arithmetic progression.

Proof. We begin with the Cauchy-Schwarz inequality: the number of 3APs inside
A can be written as 〈1A ∗ 1A, 12·A〉, and so

δ |A|2 ≤ 〈1A ∗ 1A, 12·A〉 ≤ ‖1A ∗ 1A‖2 |A|1/2 = E(A)1/2 |A|1/2 .

It follows that E(A)�δ |A|3. By the Balog-Szemerédi-Gowers lemma there exists
A′ ⊂ A such that |A′| �δ |A| and |A′ +A′| �δ |A′|.

We can now apply the Freiman-Ruzsa inverse theorem in the second form. This
produces some proper arithmetic progression P of rank d�δ 1 such that

|A| �δ |P | ≥ |A ∩ P | �δ |A| .
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Suppose that P = P1 + · · ·+Pd, where each Pi is an arithmetic progression of rank

1. By the pigeonhole principle, at least one Pi has size �δ |A|1/d. It follows, by
considering the different translates of Pi, that we can partition P into arithmetic

progressions of length � |A|1/d.
Since we know that |A ∩ P | �δ |P |, by averaging the above decomposition there

exists some progression Q of rank 1 such that |Q| � |A|1/d and |A ∩Q| �δ |Q|.
But a progression of length |Q| is nothing more than a translated and dilated

copy of {1, . . . , |Q|}, and both translation and dilation preserve arithmetic progres-
sions. It follows from Szemereédi’s theorem that, provided |Q| is sufficiently large
depending on ε and k, whenever |A ∩Q| ≥ ε |Q|, we have that A ∩ Q contains a
k-term arithmetic progression.

Now we’re done, we just need to check quantifiers. Here ε �δ, so for fixed δ
there is some fixed lower bound for ε, and hence some fixed threshold for how large
|Q| needs to be. Since |Q| ≥ c1 |A|c2 for some constants c1, c2 that depend only on
δ, we can ensure that |Q| is as large as need provided |A| is large enough. �
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