
Additive Combinatorics Sheet 1

Lent Term 2021

Instructions

� These exercises use the material developed in Chapter 1: sumset inequalities, the Balog-Szemerédi-
Gowers lemma, Plünnecke’s inequality, and covering results. The aim is to give you practice in working
with these elementary concepts and increase your familiarity.

� There are 9 exercises, of varying (and non-monotone) difficulty and length. You are not expected
to do them all, but I have provided 9 for the enthusiast. If you have solved any 4 then this should
be sufficient evidence (for yourself) that are you where you should be.

� The examples class will be run by Aled Walker, who will mark before the class your solutions to 2
exercises, but you should submit your solutions to all the exercises.

� Work to be marked should be submitted by 9am Tuesday 16th February. The class is 3:30pm
Wednesday 17th February.

� Dr. Walker would appreciate knowing in advance of the class which exercises you found the most
challenging. To this end, please submit the Self-Assessment form on Moodle before the class (even if
you have not submitted any work to be marked).

1. (a) Use Ruzsa’s triangle inequality to show that if |A+A| ≤ K |A| then

|A−A| ≤ K2 |A| .

(b) Use Plünnecke’s inequality to show that if |A−A| ≤ K |A| then

|A+A| ≤ K2 |A| .

(c) Show that for any set A

|A−A|3/4 ≤ |A+A| ≤ |A−A|4/3 .

[Hint: Use parts a) and b). These work well if we have good control on K. What bounds do you
know that work even if we don’t have control on K? Can you combine them?]

(d) Show that the exponent of 2 in part (a) is best possible by considering

A =
{

(x1, . . . , xd) ∈ Nd :
∑

xi ≤ n
}

for large n and d. (Don’t worry about rigorously calculating/showing this, but try to roughly see
why this example works.)

2. Recall that if A ⊂ Z satisfies |A+A| = 2 |A| − 1 then A must be an arithmetic progression. In this
exercise we will prove Vosper’s theorem, which is the analogous result in Fp.

Let A,B ⊂ Fp be sets such that |A| , |B| ≥ 2 and |A+B| = |A|+ |B| − 1 ≤ p− 2.

(a) Show that if either A or B is an arithmetic progression then the other must be an arithmetic
progression with the same step.
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(b) Show that if A + B is an arithmetic progression then A and B must both also be arithmetic
progressions of the same step. [Hint: Consider C −B where C is the complement of A+B.]

(c) Using the previous two parts and induction on |B|, prove that in fact A and B are always
arithmetic progressions of the same step. [Hint: What happens in our proof of the Cauchy-
Davenport lemma if equality holds?]

3. Show that if |A+B| ≤ K |A| then for any ε > 0 there is X ⊂ A such that |X| ≥ (1− ε) |A| and

|X + kB| ≤ ε−kKk |X| .

[Hint: What does Plünnecke’s inequality give you? What happens if you remove the X given by
Plünnecke from A and apply the inequality again?]

4. In Plünnecke’s inequality we go from a bound |A+B| ≤ K |A| to a bound on |X +B +B| for some
unspecified X ⊂ A. This exercise asks what kind of bounds we can expect for |A+B +B| itself.

(a) Show that if |A+B| ≤ K |A| then there exists A′ ( A such that

|A+B +B| ≤ |A′ +B +B|+K2(|A| − |A′|).

(b) Let B be a fixed set and M ≥ 1 also be fixed. Show that for any N ≥ M/ |B +B|1/2, for all A
such that |A| ≤ N and |A+B| ≤M we have

|A+B +B| ≤ 3M |B +B|1/2 − M2

N
.

[Hint: Use induction on N .]

(c) Deduce that, for any sets A and B, if |A+B| ≤ K |A| then

|A+B +B| � K2 |A|3/2 .

(d) Show that the previous bound is best possible, in that there exist arbitrarily large A and B with

|A+B| � |A| and |A+B +B| � |A|3/2. [Hint: You might want to look at finite subsets of Z3

formed by taking the union of truncated ‘lines’ and ‘planes’.]

5. Show that the following are equivalent ‘up to polynomial losses’, in that if one property holds with
parameter K then the others hold with parameters KO(1):

(a) |A+A| ≤ K |A|,

(b) there exists B such that |A+B| ≤ K |A|1/2 |B|1/2,

(c) there exists a symmetric set H containing the origin such that H+H ⊂ H+X for some |X| ≤ K,
and A ⊂ x+H for some x, and |A| ≥ K−1 |H|.

(Such an H is called a K-approximate group, and understanding the structure of these in non-abelian
groups in particular is a vibrant area of current research. This exercises shows that understanding sets
of small doubling is equivalent to understanding approximate groups.)

6. Show that if |A+A−A−A| < 2 |A| then A−A is a group.

7. Adapt the proof of the Balog-Szemerédi-Gowers lemma to show to your satisfaction that the following
asymmetric version holds: Let E(A,B) count the number of solutions to a1 + b1 = a2 + b2 with

a1, a2 ∈ A and b1, b2 ∈ B. Show that if E(A,B) ≥ K−1 |A|3/2 |B|3/2 then there exist A′ ⊂ A and
B′ ⊂ B such that

(a) |A′| � K−1 |A|,
(b) |B′| � K−1 |B|, and
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(c) |A′ −B′| � KO(1) |A|1/2 |B|1/2.

8. (a) Prove the following generalisation of Plünnecke’s inequality: if we have h sets B1, . . . , Bh such
that |A+Bi| ≤ Ki |A| for 1 ≤ i ≤ h then there is an X ⊂ A such tht

|X +B1 + · · ·+Bh| �h K1 · · ·Kh |X|

and in particular
|B1 + · · ·+Bh| �h K1 · · ·Kh |A| .

[The easiest way is to use Plünnecke’s inequality as a black box, and apply it to B = ∪(Bi + Ti)
where Ti are sets of some suitably chosen size such that the sums y+ t1 + · · ·+ th are disjoint for
all y ∈ A+B1 + · · ·+Bh and ti ∈ Ti.]

(b) By considering what happens if we replace A by A× · · · × A and Bi by Bi × · · · ×Bi show that
the second conclusion can be upgraded to

|B1 + · · ·+Bh| ≤ K1 · · ·Kh |A| .

9. This exercise shows how to improve the exponent in the Balog-Szemerédi-Gowers lemma. This proof is
due to Schoen (2014) and the exponent of K3 here remains the best known - if you can do any better
on the exponent by any method, that would be big news!

Fix some set A such that E(A) ≥ K−1 |A|3.

(a) Let G ⊂ A2 be the set of pairs (a, b) such that 1A ◦ 1A(a − b) < cE(A)/ |A|2. Show that there
exists some 1

4K ≤ λ < 1 such that if

S = {x : λ |A| < 1A ◦ 1A(x) ≤ 2λ |A|}

then ∑
(a,b)∈G

|(A− a) ∩ (A− b) ∩ S| ≤ 8cλ2 |S| |A|2 .

[Hint: Consider λ of the form 2−i and sum the quantities on both sides over an appropriate range
of i.]

(b) By considering X of the form A∩(A+s) where s is chosen uniformly at random from S, show that

there is X ⊂ A of size |X| � K−1 |A| such that for all but at most c |X|2 many pairs (a, b) ∈ X2

we have
1A ◦ 1A(a− b)� cK−1 |A| .

(c) Deduce that there exists A′ ⊂ A with |A′| � K−1 |A| and |A′ −A′| � K3 |A|.
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