
ADDITIVE COMBINATORICS EXAMPLES SHEET 1: SOLUTIONS

ALED WALKER

These are the ‘official’ solutions for the first example sheet. This is not to say that they
cannot be improved, nor that there are no alternative approaches, nor that there won’t be
the occasional small oversight or omission. Nevertheless, this document should hopefully
serve as a record of how to do all the questions, and be useful when it comes to your future
revision and study.

If you have any questions about any of these solutions, please drop me an email at
aw530@cam.ac.uk.

(1) (a) Use Ruzsa’s triangle inequality to show that if |A+ A| 6 K|A| then

|A− A| 6 K2|A|.
(b) Use Plünnecke’s inequality to show that if |A− A| 6 K|A| then

|A+ A| 6 K2|A|.
(c) Show that for any set A

|A− A|3/4 6 |A+ A| 6 |A− A|4/3.
(d) Show that the exponent of 2 in part (a) is best possible by considering

A = {(x1, . . . , xd) ∈ Nd :
∑
i6d

xi 6 n}

for large n and d.

Solution: (a) The Ruzsa triangle inequality states that for any three finite sets
A,B,C ⊂ Z,

|A− C| 6 |A−B||B − C|
|B|

.

Imputting C = A and B = −A one derives

|A− A| 6 |A+ A|| − A− A|
| − A|

=
|A+ A|2

|A|
6 K2|A|

as required.

(b) Since |A − A| 6 K|A| the Plünnecke inequality (for the set B := −A) shows
that there is some non-empty X ⊂ A for which

|X − A− A| 6 K2|X|.
Therefore

|A+ A| 6 |X − A− A| 6 K2|X| 6 K2|A|
as required.

(c) Since |A− A| 6 |A|2 we have

|A− A|3 6 |A− A|2|A|2 6
(( |A+ A|

|A|

)2
|A|
)2
|A|2 = |A+ A|4,
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where the inequalities follow from part (a). So |A−A|3/4 6 |A+A| as required. The
other inequality follows analogously, using part (b) instead of part (a).

(d) First let us describe the rough idea of this example. One observes that A
consists of essentially all the lattice points in the convex region

RA := {(y1, . . . , yd) ∈ Rd
>0 :

∑
i6d

yi 6 n}.

A simple integration shows that µd(RA) = nd/d! (µd being d-dimensional Lebesgue
measure), and so |A| ≈ nd/d!. One has

RA +RA = {(y1, . . . yd) ∈ Rd
>0 :

∑
i6d

yi 6 2n},

and therefore µd(RA +RA) = 2dnd/d!, and so |A+ A|/|A| ≈ 2d =: K.
We desire to show that µd(RA − RA)/µd(RA) � (2d)2−δ for any fixed δ > 0. We

first claim that RA − RA is the set S of all tuples (y1, . . . , yd) ∈ Rd for which there
exist a partition {1, . . . , d} = C+ ∪C0 ∪C− into three disjoint (possibly empty) sets
such that yi < 0 for i ∈ C−, yi = 0 for i ∈ C0, and yi > 0 for i ∈ C+, and for which∑

i∈C− yi > −n and
∑

i∈C+
yi 6 n. The inclusion RA − RA ⊃ S is immediate, since

one can pick tuples y := (y1, . . . , yd), y
′ := (y′1, . . . , y

′
d) ∈ RA with disjoint support,

and then y − y′ ∈ S. But the inclusion RA − RA ⊂ S also follows, since for any
y − y′ ∈ RA − RA the sum over the negative coordinates of y − y′ is at least the
sum over the coordinates of −y′, and therefore is at least −n. (The upper bound is
analogous). So RA −RA = S.

To work out µ(S), we split S according to the sets of coordinates (C−, C+). We can
assume that C0 = ∅ (as these cases contribute zero volume). Then, by the product
property of Lebesgue measure,

µd(S) =
∑

(C−,C+)

n|C−|

|C−|!
n|C+|

|C+|!
=

d∑
k=0

(
d
k

)
nk

k!

nd−k

(d− k)!
=
nd

d!

d∑
k=0

(
d
k

)2

=
nd

d!

(
2d
d

)
,

and by Stirling’s approximation one gets

µd(S) = (1 + od→∞(1))
22dnd

d!(πd)1/2
.

If d is large enough in terms of δ, then

(1 + od→∞(1))
22d

(πd)1/2
> (2d)2−δ

as required.

What remains is to make rigorous the approximation |A| ≈ µd(RA), and similar
approximations throughout the argument. Though one could do this using precise
combinatorial evaluation of |A| and |A−A| etc., it is perhaps cleaner to use the idea
of Gauss to note that, by a lattice point counting argument

|A| = µd(RA) +O((µd−1∂(RA))) = µd(RA) +Od(n
d−1),

where ∂(RA) is the boundary of RA. If n → ∞ much faster than d, this error term
doesn’t contribute to the main argument.
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(2) Recall that if A ⊂ Z satisfies |A + A| = 2|A| − 1 then A must be an arithmetic
progression. In this exercise we will prove Vospoer’s theorem, which is the analogous
result in Fp.

Let A,B ⊂ Fp be sets such that |A|, |B| > 2 and |A+B| = |A|+ |B| − 1 6 p− 2.
(a) Show that if either A or B is an arithmetic progression then the other must be

an arithmetic progression with the same step.
(b) Show that if A + B is an arithmetic progression then A and B must both also

be arithmetic progressions of the same step.
(c) Using the previous two parts and induction on |B|, prove that in fact A and B

are always arithmetic progressions of the same step.

Solution:
Before describing the solution, it will be useful to assign a name to a certain

manoeuvre that came up in the proof of the Cauchy–Davenport lemma. Given two
sets A and B in an additive group, and some e ∈ A − B, we define the Dyson
e-transform of the pair by

A(e) := A ∪ (B + e)

B(e) := (A− e) ∩B.

It is easy to check that A(e) + B(e) ⊂ A + B, that |A(e)| + |B(e)| = |A| + |B|.
Furthermore we have |B(e)| < |B| unless B + e ⊂ A.

(a) Assume that A = {a0 + kd : 0 6 k 6 n} for some n > 1. Then by Cauchy–
Davenport

|B|+ n = |A|+ |B| − 1

= |A+B|
= |{a0 + kd : 0 6 k 6 n− 1}+ {0, d}+B|
> |B + {0, d}|+ n− 1,

and so |B+{0, d}| 6 |B|+1. But Cauchy–Davenport gives the reverse inequality, so
|B + {0, d}| = |B|+ 1. This means that B and B + d differ by at most one element,
which implies that B is also a progression with common difference d.

(b) Suppose that A+B is an arithmetic progression with step d. Let

C := −(Fp \ (A+B)).

Then C is also an arithmetic progression with step d (as p is prime) and

|C| = p− |A+B| = p+ 1− |A| − |B| > 2.

Furthermore C + B ⊂ −(Fp \ A), since if any element −a of −A were contained
in C + B then C would intersect −a − B ⊂ −(A + B), a contradiction. Therefore
|C + B| 6 p − |A| = |C| + |B| − 1, and hence by Cauchy–Davenport |C + B| =
|C| + |B| − 1. Since C was an arithmetic progression of length at least 2, one sees
from part (a) that B is as well, with the same step d. Similarly for A.

(c) We induct on the size of B. If |B| = 2 then B is an arithmetic progression
already and the theorem has already been proved, so suppose that |B| > 2 and that
the claim has already been proven for smaller B. Suppose first that we can find an
element e ∈ A − B such that the e-transform B(e) of B has size 1 < |B(e)| < |B|.
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Then by Cauchy–Davenport

|A(e)|+ |B(e)| − 1 6 |A(e) +B(e)| 6 |A+B| = |A|+ |B| − 1 = |A(e)|+ |B(e)| − 1,

so
|A(e) +B(e)| = |A(e)|+ |B(e)| − 1.

By the induction hypothesis we see that A(e) and B(e) are arithmetic progressions
with the same step d, and so A+ B = A(e) + B(e) is also an arithmetic progression,
and so the theorem follows from part (b).

The only remaining case is if we have |B(e)| = 1 or |B(e)| = |B| for all e ∈ A− B.
But if E ⊂ A−B denotes all the e ∈ A−B such that |B(e)| = |B|, then B+E ⊂ A.
Hence |E| 6 |A| − |B|+ 1 by Cauchy–Davenport.

Since |A − B| > |A| + |B| − 1 by Cauchy-Davenport, we thus see that |B(e)| = 1
for at least 2|B| − 2 values of e. Since B(e) is a singleton subset of B in this case, we
conclude from the pigeonhole principle that there exists e, e′ ∈ A−B and b ∈ B such
that B(e) = B(e′) = {b}. Since |A + B| = |A| + |B| − 1 by hypothesis, we conclude
that

A+B = A(e) + b = A(e′) + b

and hence
A ∪ (B + e) = A ∪ (B + e′).

Since A intersects B + e only in b+ e, and A intersects B + e′ only in b+ e′, we thus
see that B + e and B + e′ differ by at most one element. But this forces B to be a
progression (of step e′ − e), and the theorem follows.

(3) Show that if |A + B| 6 K|A| then for any ε > 0 there is X ⊂ A such that |X| >
(1− ε)|A| and

|X +mB| 6 ε−kKm|X|.
Solution: Suppose for contradiction that there is no such set X. Now let X1 ⊂ A
be a maximal subset for which |X +mB| 6 ε−mKm|X| for all m > 1. Such a set X1

must exist, since by Plünnecke there exists some X ⊂ A with |X + mB| 6 Km|X|.
By our assumption, |X1| 6 (1− ε)|A| then we are done.

Now let A2 = A \X1. Then

|A2 +B| 6 |A+B| 6 K|A| 6 Kε−1|A2|,
so by Plünnecke again there exists X2 ⊂ A2 with

|X2 +mB| 6 (Kε−1)m|X2|.
Then

|(X1∪X2) +mB| 6 |X1 +mB|+ |X2 +mB| 6 (Kε−1)m(|X1|+ |X2|) = (Kε−1)m(|X1∪X2|)
since X1 and X2 are disjoint. But X1 is a strict subset of (X1 ∪X2), contradicting
the assumed maximality of X1.

(4) (a) Show that if |A+B| 6 K|A| then there exists A′ ⊂ A (with A′ 6= A) such that

|A+B +B| 6 |A′ +B +B|+K2(|A| − |A′|).
(b) Let B be a fixed set and M > 1 also be fixed. SHow that for any N >M/|B +

B|1/2, for all A such that |A| 6 N and |A+B| 6M we have

|A+B +B| 6 3M |B +B|1/2 − M2

N
.

(c) Deduce that, for any sets A and B, if |A+B| 6 K|A| then

|A+B +B| � K2|A|3/2.
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(d) Show that the previous bound is best possible, in that there exist arbitrarily
large A and B such with |A+B| � |A| and |A+B +B| � |A|3/2.

Solution:
(a). Plünnecke’s inequality gives us a non-empty X ⊂ A for which

|X +B +B| 6 K2|X|.
Then letting A′ := A \X, we get A+B +B = (A′ +B +B)∪ (X +B +B), and so

|A+B+B| 6 |A′+B+B|+|X+B+B| 6 |A′+B+B|+K2|X| = |A′+B+B|+K2(|A|−|A′|)
as required.

(b). We will prove this statement by induction on |A|. For notational simplicity
we write P := |B +B|1/2. If |A| 6M/P then the claim follows easily, since

|A+B +B| 6 |A||B +B| 6 M

P
P 2 = MP 6 3MP −MP 6 3M |B +B|1/2 − M2

N

since N >M/P by assumption. So w.l.o.g. we may assume that |A| > M/P . Then,
by part (a), we have some A′ ⊂ A with |A′| < |A| and

|A+B +B| 6 |A′ +B +B|+
(M
|A|

)2
(|A| − |A′|).

If |A′| 6MP−1 then we have already shown that |A′ +B +B| 6MP . So

|A+B+B| 6MP +
M2

|A|2
(|A| − |A′|) 6MP +

M2

|A|
6 2MP = 3MP − M2

M/P
6 3MP −M

2

N

as required. If alternatively we have |A′| >MP−1 then by the induction hypothesis
we obtain

|A+B +B| 6 3MP − M2

|A′|
+
M2

|A|2
(|A| − |A′|) 6 3MP − M2

|A|
6 3MP − M2

N

as required. So we are done in all cases.

(c). We look to apply the previous lemma with M = K|A|. If |B + B|1/2 6 K
then M

|B+B|1/2 > |A| and so we may substitute N = M
|B+B|1/2 in part (b) to get

|A+B +B| 6 3M |B +B|1/2 − M2

M/|B +B|1/2
= 2M |B +B|1/2 � K2|A| � K2|A|3/2.

If on the other hand |B +B|1/2 > K then we can take N = |A| in part (b) to get

|A+B +B| 6 3M |B +B|1/2 − M2

|A|
< 3M |B +B|1/2 6 3K|A|(K2|A|)1/2 � K2|A|3/2,

where the intermediate step followed by Plünnecke.

(d). Let A = {(x, y, z) ∈ Z3 : 1 6 x, y 6 N} ∪ {(0, 0, z) ∈ Z3 : 1 6 z 6 N},
and B = {(x, 0, 0) ∈ Z3 : 1 6 x 6 N} ∪ {(0, y, 0) ∈ Z3 : 1 6 y 6 N}. Then
A + B is the union of 5 generalised arithmetic progressions of dimension 2 and size
(1+o(1))N2, whereas A+B+B contains the cube {(x, y, z) ∈ Z3 : 1 6 x, y, z 6 N}.
So |A+B| � N2 � |A|, but |A+B +B| � N3 � |A|3/2.

(5) Show that the following are equivalent ‘up to polynomial losses’, in that if one prop-
erty holds with parameter K then the others hold with parameters KO(1):
(a) |A+ A| 6 K|A|,
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(b) there exists B such that |A+B| 6 K|A|1/2|B|1/2,
(c) there exists a symmetric set H containing the origin such that H +H ⊂ H +X

for some |X| 6 K, and A ⊂ x+H for some x, and |A| > K−1|H|.

Solution: It is obvious that (a) ⇒ (b), by taking B = A. Furthermore the implica-
tion (c) ⇒ (a) is straightforward, since if A ⊂ x+H for such an H then

|A+ A| 6 |H +H| 6 |H +X| 6 |X||H| 6 K|H| 6 K2|A|.

It remains to show that (b) ⇒ (c). To this end note that

|A| 6 |A+B| 6 K|A|1/2|B|1/2,

and so |A| 6 K2|B|. Hence |A+B| 6 K2|B|, and, arguing symmetrically, |A+B| 6
K2|A|.

By Ruzsa’s covering lemma, there is a set X with |X| 6 KO(1) for which A ⊂
X + B − B. By Plünnecke we also have |(B − B) + (B − B) + B| 6 KO(1)|B|, and
so by the Ruzsa covering lemma again there is also a set Y with |Y | 6 KO(1) and
(B − B) + (B − B) ⊂ Y + B − B. Picking H = X −X + B − B, we therefore see
that H satisfied the conditions for part (c).

(6) Show that if |A+ A− A− A| < 2|A| then A− A is a group.

Solution: In fact we will prove the same conclusion under the weaker hypothesis
|A+ A− A| < 2|A|.

It suffices to show that A+A−A−A ⊂ A−A. To this end, let a1, a2, a
′
1, a
′
2 ∈ A

and consider a1−a2 and a′1−a′2. Since the sets a1−a2−A and a′1−a′2−A are both
subsets of A−A−A, by the size constraints they must have non-empty intersection.
Therefore there are some a3, a

′
3 ∈ A and some z for which

a1 − a2 − a3 = z

a′1 − a′2 − a′3 = z.

Rearranging, we obtain

(a1 − a2)− (a′1 − a′2) = a3 − a′3
as required.

(7) Adapt the proof of the Balog–Szemerédi–Gowers lemma to show to your satisfac-
tion that the following asymmetric version holds: Let E(A,B) count the number
of solutions to a1 + b1 = a2 + b2 with a1, a2 ∈ A and b1, b2 ∈ B. Show that if
E(A,B) > K−1|A|3/2|B|3/2 then there exist A′ ⊂ A and B′ ⊂ B such that
(a) |A′| � K−O(1)|A|,
(b) |B′| � K−O(1)|B|, and
(c) |A′ −B′| � KO(1)|A|1/2|B|1/2.

NB: This is slightly different to the printed question, which asked for K−1 factors in
the first two expressions, but this proof is a bit cleaner.

Solution: Let c > 0 be a small constant to be chosen later, and without loss of
generality let us assume that |B| 6 |A|. Observe however that

|A||B|2 > E(A,B) > K−1|A|3/2|B|3/2,

so we have |B| > K−2|A|.
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Let X := A ∩ (B + s) and Y := (A − s) ∩ B, where s is chosen from A − B at
random with probability 1A ◦1B(s)|A|−1|B|−1. Note that X = Y +s, so in particular
|X| = |Y |. Then by linearity of expectation we have

E |X| = 1

|A||B|
∑
a∈A

∑
s

1A ◦ 1B(s)1B(a− s)

=
1

|A||B|
∑
s

(1A ◦ 1B)(s)2

=
E(A,B)

|A||B|
.

Now for any set G ⊂ A×B,

E(|(X × Y ) ∩G|) =
∑

(a,b)∈G

P((a, b) ∈ X × Y )

=
∑

(a,b)∈G

P(a ∈ B + s and b ∈ A− s)

=
∑

(a,b)∈G

P(a− s ∈ B and b+ s ∈ A)

=
∑

(a,b)∈G

∑
s

1A ◦ 1B(s)

|A||B|
1B(a− s)1A(b+ s)

6
1

|A|
∑

(a,b)∈G

1A ∗ 1B(a+ b).

Therefore, if G is defined to be the set of those pairs (a, b) ∈ A×B for which

1A ∗ 1B(a+ b) 6
c2E(A,B)2

100|A|2|B|3
,

we have (by the trivial bound |G| 6 |A||B|)

E(|(X × Y ) ∩G|) 6 c2E(A,B)2

100|A|2|B|2
.

So, by linearity of expectation and Cauchy–Schwarz

E(|X|2 − c−1|X × Y ∩G|) > E(|X|)2 − c−1 E(|(X × Y ) ∩G|) > 1

2

E(A,B)2

|A|2|B|2
.

From this we conclude that there must exist some s ∈ A−B for which both

|X| = |Y | � E(A,B)

|A||B|
� K−1|A|1/2|B|1/2 � K−O(1)|A|,

and
|(X × Y ) ∩G| 6 c|X||Y |.

In other words, for all but a proportion c of the pairs (x, y) ∈ X × Y , we have

1A ∗ 1B(x+ y) >
c2E(A,B)2

100|A|2|B|3
>

c2|A|
100K2

.

The rest of the argument is very similar to the lectured material, although one
needs to tweak the graph theory ever so slightly. Indeed, constructing a bipartite

graph on the vertex set X × Y where (x, y) is an edge if 1A ∗ 1B(x+ y) > c2|A|
1002K

, the
number of edges is at least 0.99|X||Y | (say), if c is small enough. Letting

A′ = {x ∈ X : deg(x) > 0.49|Y |}



8 ALED WALKER

and

B′ = {y ∈ Y : deg(y) > 0.49|X|},
we observe that |A′| > 0.49|X| and |B′| > 0.49|Y |, say. Indeed, if |A′| < 0.49|X| then
the number of edges in the graph would be at most 0.49|X||Y | (the contribution from
those vertices in X with degree at most 0.49|Y |) plus 0.49|X||Y | (the contribution
from those vertices in A′), which would mean that the total number of edges is less
than 0.98|X||Y |, a contradiction. The same argument holds for B′.

We claim that for each (a, b) ∈ A′ × B′, there are � K−O(1)|A|2 paths of length
three in the above graph, starting at a and finishing at b. Indeed, the number of
edges between Γ(a) and Γ(b) (the neighbourhoods of a and b) is at least

|Γ(a)||Γ(b)| − 0.01|X||Y | > 0.482|X||Y | − 0.01|X||Y | � |X||Y | � K−O(1)|A|2

as claimed.
We now claim that all of the above observations imply that |A′+B′| � KO(1)|A|.

Indeed, for each x ∈ A′ + B′ fix an expression ax + bx = x. We know that there are
� K−O(1)|A|2 choices (b1, a1) ∈ B × A for which (ax, b1), (b1, a1) and (a1, bx) are all
edges of the graph. Writing

x = ax + bx = ax + b1 − b1 − a1 + a1 + bx,

we generate a further K−O(1)|A|3 sextuples (c1, d1, c2, d2, c3, d3) for which

ax + b1 = c1 + d1, b1 + a1 = c2 + d2, c3 + d3 = a1 + bx.

Summing over all (b1, a1) this leaves us with K−O(1)|A|5 sextuples, and they are all
distinct, since we can recover x by

c1 + d1 − c2 − d2 + c3 + d3 = x,

and therefore recover the fixed pair (ax, bx) and thus (b1, a1) as well by the relations
ax + b1 = c1 + d1 etc.

Summing over all x, the total number of sextuples generated must be at most
|A|3|B|3, which is at most |A|6. Therefore

|A′ +B′|K−O(1)|A|5 � |A|6,

which yields

|A′ +B′| � KO(1)|A| � KO(1)|A|1/2|B|1/2.
This is nearly what we required, excepting for the fact that that we have A′ +B′

instead of A′ − B′. However, by running the argument with −B in place of B we
may also prove the version with a difference set.

(8) (a) Prove the following generalisation of Plünnecke’s inequality: if we have h sets
B1, . . . , Bh such that |A + Bi| 6 Ki|A| for 1 6 i 6 h then there is an X ⊂ A
such that

|X +B1 + · · ·+Bh| �h K1 · · ·Kh|X|,
and in particular

|B1 + · · ·+Bh| �h K1 · · ·Kh|A|.

(b) By considering what happens if we replace A by A×· · ·×A and Bi by Bi×· · ·Bi,
show that the second conclusion can be upgraded to

|B1 + · · ·+Bh| 6 K1 · · ·Kh|A|.
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Solution: (a): Without loss of generality we may assume that the Ki’s are
integers. Take auxiliary sets T1, . . . , Th ⊂ G such that |Ti| = ni (which will be
specified later) such that all the sums

y + t1 + · · ·+ th, y ∈ A+B1 + · · ·+Bh, ti ∈ Ti
are distinct. (This may be impossible in a finite group, but in that case embed
the problem into a infinite group first.) Now apply Plünnecke’s theorem with

B := ∪i(Bi + Ti).

Observe that

|A+B| 6
∑
i

|A+Bi + Ti| 6
∑
i

|A+Bi||Ti| 6 |A|
∑
i

Kini,

so we thus obtain a set X ⊂ A for which

|X + hB| 6 |X|
(∑

i

Kini

)h
.

On the other hand X+hB ⊃ X+B1+ · · ·+Bh+T1+ · · ·+Th, and consequently
we have

|X + hB| > |X +B1 + · · ·+Bh|n1 . . . nk

by the disjointness property of the Ti’s. Putting these inequalities together gives

|X +B1 + · · ·+Bh| 6
(∑

i

niKi

)h
(n1 . . . nh)

−1|X|.

Choosing ni = n/Ki for some n which is a multiple of all the Ki’s, we obtain

|X +B1 + · · ·+Bh| 6 hhK1 . . . Kh|X|

as required.

(b): Letting B⊗mi denote Bi × · · · ×Bi m times, we have

|A⊗m +B⊗mi | = |(A+Bi)
⊗m| = |A+Bi|m 6 Km

i |A|.

So by part (a), there is an absolute constant Ch for which

|B1 + · · ·+Bh|m = |B⊗m1 + · · ·+B⊗mh | 6 ChK
m
1 . . . Km

h |A⊗m| = ChK
m
1 . . . Km

h |A|m.

Taking mth roots we get

|B1 + · · ·+Bh| 6 C
1/m
h K1 . . . Kh|A|.

Sending m→∞ yields the result.
(9) This exercise shows how to improve the exponent in the Balog–Szemerédi–Gowers

lemma. This proof is due to Scheon (2014) and the exponent of K3 here remains the
best known – if you can do any better on the exponent by any method, that would
be big news!

Fix some set A such that E(A) > K−1|A|3.
(a) Let G ⊂ A2 be the set of pairs (a, b) such that 1A ◦ 1A(a − b) < cE(A)/|A|2.

Show that there exists some 1
4K

6 λ < 1 such that if

S = {x : λ|A| < 1A ◦ 1A(x) 6 2λ|A|}

then ∑
(a,b)∈G

|(A− a) ∩ (A− b) ∩ S| 6 2cλ2|S||A|2.
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(b) By considering X of the form A∩(A+s), where s is chosen uniformly at random
from S, show that there is X ⊂ A of size |X| � K−1|A| such that for all but at
most c|X|2 many pairs (a, b) ∈ X2 we have

1A ◦ 1A(a− b)� cK−1|A|.

(c) Deduce that there exists A′ ⊂ A with |A′| � K−1|A| and |A′ − A′| � K3|A|.

Solution:
(a): Let I be the natural number for which 2I > (2K)−1, and for 1 6 i 6 I let

Si := {x : 2−i|A| < 1A ◦ 1A(x) 6 2−i+1|A|}.

Then on the one hand∑
i6I

∑
(a,b)∈G

|(A− a) ∩ (A− b) ∩ Si| =
∑

(a,b)∈G

∑
i6I

∑
s∈Si

1A(s+ a)1A(s+ b)

6
∑

(a,b)∈G

1A ◦ 1A(a− b)

6 cE(A),

by the trivial bound |G| 6 |A|2. On the other hand

2c
∑
i6I

(2−i|A|)2|Si| > 2c
∑
i6I

∑
x∈A−A

(1A ◦ 1A(x))21Si
(x)

> 2c
∑

x∈A−A
1A◦1A(x)> |A|

2K

(1A ◦ 1A(x))2

> cE(A),

since otherwise we would have

E(A) =
∑

x∈A−A
1A◦1A(x)> |A|

2K

(1A ◦ 1A(x))2 +
∑

x∈A−A
1A◦1A(x)<

|A|
2K

(1A ◦ 1A(x))2

<
E(A)

2
+
|A|
2K

∑
x∈A−A

1A ◦ 1A(x)

=
E(A)

2
+
|A|3

2K
,

thus implying that E(A) < K−1|A|3, contrary to assumption. This implies that∑
i6I

∑
(a,b)∈G

|(A− a) ∩ (A− b) ∩ Si| 6
∑
i6I

2c(2−i|A|)2|Si|,

and so there is some i 6 I for which∑
(a,b)∈G

|(A− a) ∩ (A− b) ∩ Si| 6 2c(2−i|A|)2|Si|.

Picking λ = 2−i, and noting that 1 > λ > (4K)−1, we obtain the claim.

(b). Let X = A ∩ (A+ s), with s chosen uniformly at random from S. We have

E |X| = 1

|S|
∑
s∈S

1A ◦ 1A(s) > λ|A| � K−1|A|.



ADDITIVE COMBINATORICS EXAMPLES SHEET 1: SOLUTIONS 11

Letting G be the subset of pairs from part (a), we have that

E(|(X ×X) ∩G|) =
∑

(a,b)∈G

1

|S|
∑
s∈S

1A(s+ a)1A(s+ b)

=
1

|S|
∑

(a,b)∈G

|(A− a) ∩ (A− b) ∩ S|

6 2cλ2|A|2.
Therefore by Cauchy–Schwarz and linearity of expectation,

E(|X ×X| − 1

100c
|(X ×X) ∩G|) > E(|X|)2 − 1

100c
E |(X ×X) ∩G|

> λ2|A|2 − 1

50
λ2|A|2

� λ2|A|2

� K−2|A|2

Therefore there exists some choice of s ∈ S for which |X| � K−1|A| and 6
100c|X|2 pairs (a, b) ∈ X2 satisfy (a, b) ∈ G. By replacing c with 100c, we conclude
that for all but at most c|X|2 many pairs (a, b) ∈ X2 we have

1A ◦ 1A(a− b)� cK−1|A|,
as required.

(c). The conclusion is exactly as in the lectured proof of BSG, so we only sketch
the details here. We construct a bipartite graph on vertex set X × X with (a, b)
being an edge if 1A ◦ 1A(a− b)� cK−1|A| (with the same implied constant as in the
conclusion of part (b)). This graph has at least (1− c)|X|2 edges, and so, assuming
that c < 1/100 say, letting

A′ := {x ∈ X : deg(x) >
3

4
|X|}

we get |A′| � |X|.
Now, for each (a1, a2) ∈ A′ × A′, there are � K−1|A| elements a ∈ X for which

(a1, a) and (a, a2) are edges of the graph (since Γ(a1) ∩ Γ(a2) is suitably large). [A
path of length 2, whereas in Q7 we used paths of length 3.]

Now, for each x ∈ A′−A′ we fix some (ax, bx) ∈ A′×A′ with ax−bx. For each a such
that (ax, a) and (a, bx) are edges of the graph, we may associate at least (cK−1|A|)2
quadruples (y1, y2, z1, z2) ∈ A4 such that y1− y2 = ax− a and z1− z2 = a− bx. Since
we can recover x and a from the quadruple via

y1 − y2 + z1 − z2 = x,

summing over choices of a shows that each x ∈ A′ −A′ yields � c2K−3|A|3 quadru-
ples, and these quadruples are disjoint for each x.

Therefore, summing over x, we get

|A′ − A′|c2K−3|A|3 � |A|4

. Picking c = 1/100 and rearranging we get |A′ − A′| � K3|A| as required.


