Additive Combinatorics Sheet 2

Lent Term 2021

Instructions

- These exercises use the material developed in Chapter 2: Fourier analysis, Bohr sets, and the density increment strategy.
- There are 11 exercises, of varying (and non-monotone) difficulty and length. You are not expected to do them all, but I have provided 10 for the enthusiast. If you have solved any 5 then this should be sufficient evidence (for yourself) that are you where you should be.
- The examples class will be run by Aled Walker, who will mark before the class your solutions to 2 exercises.
- The two exercises to be marked should be submitted by **9am Monday 8th March**. The class is **3:30pm Wednesday 10th March**. You should only submit the two solutions to be marked.
- Dr. Walker would appreciate knowing in advance of the class which exercises you found the most challenging. To this end, please submit the Self-Assessment form on Moodle before the class (even if you have not submitted any work to be marked).
- 1. Prove the Fourier inversion formula, that for any $f: G \to \mathbb{C}$,

$$f(x) = \prod_{\gamma} \widehat{f}(\gamma)\gamma(x),$$

both directly using orthogonality and also as a corollary of Parseval's theorem.

- 2. (a) Show that $|\widehat{1}_A(\gamma)| \in \{0, |A|\}$ for all $\gamma \in \widehat{G}$ if and only if A is a coset of subgroup.
 - (b) Use Fourier analysis to prove that |A + A| = |A| if and only if A is a translate of a subgroup. (We have already seen a simple elementary proof of this fact, but it is instructive to find a Fourier analytic proof.)
- 3. (a) Prove that if $A \subset G$ with density $\alpha > 0$ and $|\widehat{1}_A(\gamma)| \le \delta |A|$ for all $\gamma \ne \mathbf{1}$ then, for any $x \in G$ and $k \ge 2$, we have

$$\left| 1_A * \cdots * 1_A(x) - \alpha |A|^{k-1} \right| \le \delta^{k-2} |A|^{k-1},$$

where the convolution is taken with k copies of A.

- (b) Deduce that if $k \geq 3$ and $|\widehat{1}_A(\gamma)| < \alpha^{1/(k-2)} |A|$ for all $\gamma \neq 1$ then kA = G.
- 4. The higher additive energies are defined, for any $m \ge 1$ and finite set A, by

$$E_{2m}(A) = \#\{(a_1, \dots, a_{2m}) : a_i \in A \text{ and } a_1 + \dots + a_m = a_{m+1} + \dots + a_{2m}\}$$

(so that e.g. the usual additive energy E(A) is $E_4(A)$).

(a) Show that

$$E_{2m}(A) = \prod_{\gamma} \left| \widehat{1}_A(\gamma) \right|^{2m}.$$

(b) Use Hölder's inequality to show that if $n \ge m \ge 1$ (and n > 1) then

$$E_{2m}(A) \le |A|^{\frac{n-m}{n-1}} E_{2n}(A)^{\frac{m-1}{n-1}}.$$

- (c) Deduce that if $|A + A| \le K|A|$ then for all $m \ge 2$ we have $E_{2m}(A) \ge K^{1-m}|A|^{2m-1}$. Compare this to what would follow by an application of Plünnecke's inequality.
- 5. (a) Using the density increment strategy and question 3, show that, for any $k \geq 3$, if $A \subset \mathbb{F}_p^n$ with density $\alpha = |A|/p^n$ then kA contains a coset of a subspace with codimension $O_k(\alpha^{-1/(k-2)})$.
 - (b) If $|\mathbf{x}|$ is the Hamming weight of $\mathbf{x} \in \mathbb{F}_2^n$, i.e. the number of 1s in \mathbf{x} , then let

$$A = \{ \mathbf{x} \in \mathbb{F}_2^n : |\mathbf{x}| \ge n/2 + \sqrt{n} \}.$$

Show that (for large n) we have $|A| \ge \frac{1}{4}2^n$ and any coset of a subspace contained inside A+A has codimension $\gg \sqrt{n}$. (In particular, in contrast to the situation for $k \ge 3$ in part (a), for k = 2 it is not possible to guarantee a coset of a subspace with codimension $O_{\alpha}(1)$ in A + A.)

- 6. Let $B = \operatorname{Bohr}(\Gamma; \rho)$ be a Bohr set of rank d and width $\rho \leq 1/2$ inside a finite abelian group G of order N.
 - (a) Show that if $\gamma \in \Gamma$ then $|\widehat{1}_B(\gamma)| \ge \frac{1}{2} |B|$.
 - (b) Deduce that $|B| \leq \frac{4}{d}N$.
 - (c) Show that, for arbitrarily large $d \ge 1$ and $N \ge 1$, there exists a Bohr set B of rank d and width $\rho \le 1/2$ in $\mathbb{Z}/N\mathbb{Z}$ such that $|B| \gg \frac{1}{d}N$.
- 7. Show that for any Bohr set B of rank d and dilate $0 < \delta < 1/2$, the Bohr set B is $(1/\delta)^{O(d)}$ -covered by its dilate B_{δ} .
- 8. Let B be a regular Bohr set of rank d and width $\rho \leq 1/2$.
 - (a) Show that for any $\eta, \delta > 0$ if $x \in B_{\delta}$ and $|\widehat{1}_{B}(\gamma)| \geq \eta |B|$ then

$$|1 - \gamma(x)| \ll \frac{\delta}{n}d.$$

Hint: Consider the difference $\langle 1_B, \gamma \rangle - \langle 1_{B-x}, \gamma \rangle$.

(b) Deduce that if $\Delta = \{\gamma : |\widehat{1}_B(\gamma)| \ge \frac{1}{2} |B|\}$ then there is an absolute constant c > 0 such that

$$B_{c\rho/d} \subset \operatorname{Bohr}(\Delta; \rho) \subset B.$$

9. Suppose we knew the following for some functions $D, \delta : [0,1] \to \mathbb{R}$:

If $A \subset \mathbb{F}_p^n$ is a subset of density α that contains no non-trivial three-term arithmetic progressions than either

- (a) $|A| \ll p^{n/2}$ or
- (b) there is a subspace $V \leq \mathbb{F}_p^n$ of codimension $\leq D(\alpha)$ and a translate x such that $|(A-x)\cap V|/|V| \geq (1+\delta(\alpha))\alpha$.

(So that e.g. Lemma 15 in lectures is this with $D(\alpha) = 1$ and $\delta(\alpha) = \alpha/4$.)

What upper bounds can you deduce for the maximal size of a subset of \mathbb{F}_p^n which has no non-trivial three-term arithmetic progressions if...

(a) $D(\alpha) \ll \alpha^{-1/2}$ and $\delta(\alpha) \gg \alpha^{1/2}$,

- (b) $D(\alpha) \ll \alpha^{-1}$ and $\delta(\alpha) \gg 1$, or
- (c) $D(\alpha) \ll 1$ and $\delta(\alpha) \gg 1$.
- 10. Suppose we knew the following for some functions $D, \delta : [0,1] \to \mathbb{R}$, for any finite abelian group G of odd order:

Let B be a regular Bohr set of rank d and width ρ . If $A \subset B$ is a subset of density α that contains no non-trivial three-term arithmetic progressions than either

(a)
$$|A| \ll (d/\alpha)^{O(d)} |B|^{1/2}$$
 or

(b) there is a regular Bohr set $B' \subset B$ of rank $\leq d + D(\alpha)$ and width $\gg \rho(\alpha/d)^{O(1)}$ and a translate x such that $|(A-x) \cap B'| / |B'| \geq (1+\delta(\alpha))\alpha$.

(So that e.g. Lemma 20 in lectures is this with $D(\alpha) = 1$ and $\delta(\alpha) \gg \alpha$.)

What upper bounds can you deduce for the maximal size of a subset of $\{1, \ldots, N\}$ which has no non-trivial three-term arithmetic progressions if...

- (a) $D(\alpha) \ll \alpha^{-1/2}$ and $\delta(\alpha) \gg \alpha^{1/2}$,
- (b) $D(\alpha) \ll \alpha^{-1}$ and $\delta(\alpha) \gg 1$, or
- (c) $D(\alpha) \ll 1$ and $\delta(\alpha) \gg 1$.
- 11. Let $m \ge 2$ and p > m be prime.
 - (a) Sketch a proof that if $A \subset \mathbb{F}_p^n$ is a set of density α which has no solutions to $x_1 + \cdots + x_m = my$ with $x_1, \ldots, x_m, y \in A$ all distinct, then there is some constant $c_m > 0$ depending only on m such that either
 - i. $|A| \gg (p^n)^{1-c_m}$, or
 - ii. there is a subspace $V \leq \mathbb{F}_p^n$ of codimension 1 and a translate x such that

$$|(A-x) \cap V| / |V| \ge (1 + c_m \alpha^{\frac{1}{m-1}}) \alpha.$$

(b) Deduce that if $A \subset \mathbb{F}_p^n$ contains no solutions to $x_1 + \cdots + x_m = my_m$ with all variables distinct then

$$|A| \ll_{p,m} \frac{p^n}{n^{m-1}}.$$

The energetic amongst you might also want to consider the same problem over $\mathbb{Z}/N\mathbb{Z}$.