
ADDITIVE COMBINATORICS EXAMPLES SHEET 2: SOLUTIONS

ALED WALKER

These are the ‘official’ solutions for the second example sheet. This is not to say that they
cannot be improved, nor that there are no alternative approaches, nor that there won’t be
the occasional small oversights or omissions! Nevertheless, this document should hopefully
serve as a record of how to do all the questions, and be useful when it comes to your future
revision and study.

If you have any questions about any of these solutions, please drop me an email at
aw530@cam.ac.uk.

(1) Prove the Fourier inversion formula, that for any f : G→ C,

f(x) = E
γ∈Ĝ

f̂(γ)γ(x),

both directly using orthogonality and also as a corollary of Parseval’s theorem.

Solution: Using the character property γ(−g)γ(x) = γ(−g+x) and Fourier orthog-
onality in the form of

E
γ∈Ĝ

γ(−g + x) = 1−g+x=0,

we derive

E
γ∈Ĝ

f̂(γ)γ(x) = E
γ∈Ĝ

γ(x)
∑
g∈G

f(g)γ(−g)

=
∑
g∈G

f(g) E
γ∈Ĝ

γ(−g)γ(x)

=
∑
g∈G

f(g) E
γ∈Ĝ

γ(−g + x)

=
∑
g∈G

f(g)1−g+x=0

= f(x)

as required.
Now, for each fixed x ∈ G, the function γ 7→ γ(x) is the Fourier transform of the

indicator function 1{x} : G 7→ C. So by Parseval’s identity we have

E
γ∈Ĝ

f̂(γ)γ(x) = 〈f̂ , 1̂{x}〉Ĝ = 〈f, 1{x}〉G = f(x)

as required.

(2) (a) Show that |1̂A(γ)| ∈ {0, |A|} for all γ ∈ Ĝ if and only if A is a coset of a subgroup.
(b) Use Fourier analysis to prove that |A + A| = |A| if and only if A is a translate

of a subgroup. (We have already seen a simple elementary proof of this fact, but
it is instructive to find a Fourier-analytic proof.)
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Solution: For part (a), assume first that |1̂A(γ)| ∈ {0, |A|} for all γ ∈ Ĝ. Let

Γ ⊂ Ĝ be the set of characters γ for which |1̂A(γ)| = |A|. For all γ ∈ Γ, the triangle
inequality gives

|1̂A(γ)| =
∣∣∣∑
a∈A

γ(−a)
∣∣∣ 6∑

a∈A

|γ(−a)| = |A|

with equality if and only if all the terms γ(−a) have the same argument. Therefore
there is some constant cγ such that γ(a) = cγ for all a ∈ A. Fixing some a0 ∈ A, we
get

A− a0 ⊂
⋂
γ∈Γ

ker γ0.

However, since |1̂A(γ)| = 0 for γ /∈ Γ, by Fourier inversion we see that 1A(x) = 1A(y)
if γ(x) = γ(y) for all γ ∈ Γ. Therefore A is the entirety of a0 + ∩γ∈Γ ker γ, so A is a
coset of a subgroup.

To prove the converse, suppose that A = a0 + H for some subgroup H 6 G. We

have G ∼= H × G/H and so Ĝ ∼= Ĥ × Ĝ/H. Picking γ = (γ1, γ2) ∈ Ĥ × Ĝ/H, we
observe that

|1̂A(γ)| =
∣∣∣∑
h∈H

γ(a0 + h)
∣∣∣ =

∣∣∣∑
h∈H

(γ1, γ2)(h, ã0)
∣∣∣ = |γ2(ã0)|

∣∣∣∑
h∈H

γ1(h)
∣∣∣ ∈ {0, |H|},

where ã0 is the image of a0 in the quotient group G/H. This is as required.

For part (b), the direction “A is a translate of a subgroup ⇒ |A + A| = |A|” is
immediate from the underlying group theory (as (a+H) + (a+H) = (a+ a) +H).
We focus on the other direction. Since

|A|2 =
∑

g∈A+A

(1A ∗ 1A)(g),

with the absolute value of each summand being at most |A|, since |A+A| = |A| we
conclude that 1A ∗ 1A(g) = |A| for all g ∈ A+ A. Then

1̂A(γ)2 = 1̂A ∗ 1A(γ) = |A|1̂A+A(γ).

However, A+ A = A+ a0 for some (in fact for all) a0 ∈ A, and so

1̂A+A(γ) = 1̂A(γ)γ(−a0).

Hence

1A(γ)2 = γ(−a0)|A|1̂A(γ),

so 1̂A(γ) ∈ {0, |A|}. By part (a) then, we conclude that A must be a translate of a
subgroup.

(3) (a) Prove that if A ⊂ G with density α > 0 and |1̂A(γ)| 6 δ|A| for all γ 6= 1 then,
for any x ∈ G and k > 2, we have∣∣∣1A ∗ · · · ∗ 1A(x)− α|A|k−1

∣∣∣ 6 δk−2|A|k−1,

where the convolution is taken with k copies of A.
(b) Deduce that if k > 3 and |1̂A(γ)| < α1/(k−2)|A| for all γ 6= 1 then kA = G.



ADDITIVE COMBINATORICS EXAMPLES SHEET 2: SOLUTIONS 3

Solution: We will use ∗k to denote k-fold convolution. For part (a), we use Fourier
inversion to conclude that

1A ∗k 1A = E
γ∈Ĝ

̂1A ∗k 1A(γ)γ(x) = E
γ∈Ĝ

1̂A(γ)kγ(x)

=
|A|k

|G|
+

1

|G|
∑
γ 6=1

1̂A(γ)kγ(x)

= α|A|k−1 +
1

|G|
∑
γ 6=1

1̂A(γ)kγ(x).

Now, from Parseval and the assumptions in the question,∣∣∣ 1

|G|
∑
γ 6=1

1̂A(γ)kγ(x)
∣∣∣ 6 ∣∣∣ 1

|G|
∑
γ 6=1

|1̂A(γ)|k
∣∣∣

6 δk−2|A|k−2 E
γ∈Ĝ
|1̂A(γ)|2

= δk−2|A|k−2〈1̂A, 1̂A〉Ĝ
= δk−2|A|k−2〈1A, 1A〉G
= δk−2|A|k−1,

giving the required bound.
For part (b), let δ = maxγ 6=1 |1̂A(γ)|/|A| and note that δ < α1/(k−2). Then, by part

(a), for all x ∈ G∣∣∣1A ∗k 1A(x)− α|A|k−1
∣∣∣ 6 δk−2|A|k−1 < α

k−2
k−2 |A|k−1 = α|A|k−1.

So 1A ∗k 1A(x) > 0. Since x was arbitrary, we have kA = G.

(4) The higher additive energies are defined, for any m > 1 and finite set A, by

E2m(A) = |{(a1, . . . , a2m) : ai ∈ A and a1 + · · ·+ am = am+1 + · · ·+ a2m}
(so that e.g. the usual additive energy E(A) is E4(A)).

(a) Show that

E2m(A) = E
γ∈Ĝ
|1̂A(γ)|2m.

(b) Use Hölder’s inequality to show that if n > m > 1 (and n > 1) then

E2m(A) 6 |A|
n−m
n−1 E2n(A)

m−1
n−1 .

(c) Deduce that if |A+A| 6 K|A| then for all n > 2 we have E2n(A) > K1−n|A|2n−1.
Compare this to what would follow by an application of Plünnecke’s inequality.

(I’ve changed the index in part (c) from m to n to make the notation line up better
with part (b).

Solution: For part (a), there is a slick solution, which is to note by Parseval that

E2m(A) =
∑
x∈G

1A∗m1A(x)2 = 〈1A∗m1A, 1A∗m1A〉G = 〈 ̂1A ∗m 1A, ̂1A ∗m 1A〉Ĝ = E
γ∈Ĝ
|1̂A(γ)|2m

as required.
However, I will go through a line by line derivation of a more laborious route

(as for most students I would suspect that this is the first time they will have seen
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anything like this). Once you are more confident, you are allowed to skip some of
these intermediate steps!

By definition we have

E
γ∈Ĝ
|1̂A(γ)|2m = E

γ∈Ĝ

∣∣∣∑
a∈A

γ(−a)
∣∣∣2m

= E
γ∈Ĝ

( ∑
a1∈A

γ(−a1) ·
∑

am+1∈A

γ(−am+1)
)m

= E
γ∈Ĝ

( ∑
a1∈A

γ(−a1) ·
∑

am+1∈A

γ(am+1)
)m

= E
γ∈Ĝ

∑
a1,...,am∈A

m∏
i=1

γ(−ai)
∑

am+1,...,a2m∈A

2m∏
j=m+1

γ(aj)

=
∑

a1,...,am∈A
am+1,...,a2m∈A

E
γ∈Ĝ

m∏
i=1

γ(−ai)
2m∏

j=m+1

γ(aj)

=
∑

a1,...,am∈A
am+1,...,a2m∈A

E
γ∈Ĝ

γ(−a1 − · · · − am + am+1 + · · ·+ a2m)

=
∑

a1,...,am∈A
am+1,...,a2m

1−a1−···−am+am+1+···+a2m=0

= E2m(A)

as required. [For example, usually I would skip from line 1 until at least line 5 or 6.]

For part (b), we note that E2(A) = |A| for trivial reasons and thus the inequality
is satisfied when m = 1. The n = m cases are also trivial. So w.l.o.g. n > m > 1.
We then apply Hölder’s inequality with the exponents p = n−1

n−m and q = n−1
m−1

. Then
1
p

+ 1
q

and 1 < p, q <∞, so these are valid exponents for Hölder, and we get

E2m(A) = E
γ∈Ĝ
|1̂A(γ)|2m = E

γ∈Ĝ
|1̂A(γ)|

2(n−m)
n−1 · |1̂A(γ)|

2n(m−1)
n−1

6
(

E
γ∈Ĝ
|1̂A(γ)|

2(n−m)p
n−1

) 1
p
((

E
γ∈Ĝ
|1̂A(γ)|

2n(m−1)q
n−1

) 1
q

=
(

E
γ∈Ĝ
|1̂A(γ)|2

)n−m
n−1
(

E
γ∈Ĝ
|1̂A(γ)|2n

)m−1
n−1

= |A|
n−m
n−1 E2n(A)

m−1
n−1

as required.
For part (c) we may proceed by induction on n. The base case of n = 1 is exactly

the assumption |A + A| 6 K|A|, and then for the induction step we assume that
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n > 2 and, assuming that the inequality holds for n− 1, derive

E2n(A) >
(
E2n−2(A)|A|−

1
n−1

)n−1
n−2

>
(
K1−(n−1)|A|2(n−1)−1− 1

n−1

)n−1
n−2

=
(
K2−n|A|2n−3− 1

n−1

)n−1
n−2

= K2−n|A|
2n2−5n+2

n−2

= K1−n|A|2n−1

as required.
If we had applied Plünecke we would have deduced that |nA| 6 Kn|A|. Then by

Cauchy-Schwarz we get

E2n(A) =
∑
x∈nA

1A ∗n 1A(x)2

>
( ∑
x∈nA

1
)−1( ∑

x∈nA

1A ∗n 1A(x)
)2

= |nA|−1|A|2n

> K−n|A|2n−1

So the Hölder argument gives a slightly stronger lower bound.

(5) (a) Using the density increment strategy and question 3, show that, for any k > 3,
if A ⊂ Fnp with density α = |A|/pn then kA contains a coset of a subspace with

codimension Ok(α
−1/(k−2)).

(b) If |x| is the Hamming weight of x ∈ Fn2 , i.e. the numberof 1-s in x, then let

A = {x ∈ Fn2 : |x| > n/2 + c
√
n}

for an absolute constant c > 0. Show that (for large n) we have |A| �c 2n

and any coset of a subspace contained inside A + A has codimension �c

√
n.

(In particular, in contrast to the situation for k > 3 in part (a), for k = 2 it is
not possible to guarantee a coset of a subspace with codimension Oα(1) in A+A.)

NB: Our statements of both part(a) and part (b) are slightly different to the ex-
ample sheet, which had a typo in the numerics.

Solution: We know from Question 3 that if |1̂A(γ)| < α
1

k−2 |A| for all γ 6= 1 then
kA = G, in which case we are done. Hence we may assume that there is some γ 6= 1

for which |1̂A(γ)| > α
1

k−2 |A|.
Let fA := 1A − α be the balanced function of A. Then, since γ 6= 1, we have

f̂A(γ) = 1̂A(γ). Define c ∈ C by cf̂A(γ) = |f̂A(γ)|. Then

〈fA, cγ + 1〉G = |f̂A(γ)|+
∑
x∈G

fA(x) = |f̂A(γ)|.

Let V ′ = ker γ, which is a subspace of Fnp of codimension 1, and let V ′0 , . . . , V
′
p−1

denote the p cosets of V ′, where V ′i := V ′ + xi for some xi ∈ Fnp . Then

|f̂A(γ)| =
∑
x∈G

fA(x)(cγ(x) + 1) =

p−1∑
i=0

(|A∩ V ′i | −α|V ′i |)(cγ(xi) + 1) =

p−1∑
i=0

(|A∩ V ′i | −α|V ′i |)ci
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for some ci ∈ C with <ci ∈ [0, 2]. Taking real parts, we have

α
1

k−2 |A| 6 2

p−1∑
i=0

(|A ∩ V ′i | − α|V ′i |).

So there must be some i for which

|A ∩ V ′i | > α|V ′i |+
α1/(k−2)|A|

2p
= α|V ′i |(1 +

α
1

k−2

2
).

The density increment thus constructed, we conclude as follows. Let (A0, V0),
(A1, V1), . . . , (Al, Vl) be a maximal sequence of sets and subspaces, with Ai ⊂ Vi+xi
for some translates xi, for which
(a) (A0, V0) := (A,Fnp );

(b) Vi ∼= Fn−ip for all i;

(c) αi := |Ai|/|Vi| satisfies αi+1 > αi(1 +
α

1
k−2
i

2
);

(d) kAi 6= Vi for all i 6 l − 1.
Then αl < 1. However, we observe from Bernoulli’s inequality that

αi+m > αi(1 +
mα

1
k−2

i

2
) > 2αi

if m > 2α
− 1

k−2

i . Since 2α
− 1

k−2

i > 1 we certainly have

αi+m > 2αi if m = b4α−
1

k−2

i c.
Thus

l 6
log(1/α)/ log 2∑

j=0

4(2jα)−
1

k−2 �k α
− 1

k−2 .

Since kAl = Vl, we conclude that kA must contain a translate of a subspace of

codimension Ok(α
− 1

k−2 ) as required.

For part (b), we can use the Central Limit Theorem to estimate |A| (as applied
to independent {0, 1} valued Bernoulli random variables X1, . . . , Xn). Thus

P(

∑n
i=1Xi − n/2√

n/4
> 2c)→ Φ(2c)

as n→∞, where

Φ(2c) :=

c∫
−∞

1√
2π
e−t

2/2 dt.

This certainly implies that 2−n|A| > Φ(2c)/2 for large enough n, and thus |A| �c 2n

as desired.
In some case one may also use Stirling’s approximation for the central binomial

coefficient. Indeed,
|A| > 2n−1 − c

√
n(

n
n/2 ).

By Stirling,(
n
n/2

)
= (1 + o(1))

nn+1/2e−n
√

2π

(n/2)n+1e−n2π
= (1 + o(1))

2n+1

√
2πn

.

So |A| �c 2n if c is small enough.
Observe that if x ∈ A + A then at least 2c

√
n of the coordinates of x are 0. Let

V be an arbitrary subspace of Fn2 of codimension at most 2c
√
n, and let y ∈ Fn2 also
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be arbitrary. We will find a vector x ∈ (A + A) \ (y + V ), thus proving that A + A
does not contain any coset of a subspace with codimension 6 2c

√
n.

Indeed, letting d = dimV , pick a basis v1, . . . ,vd for V , and consider the d-by-n
matrix over F2 whose rows are given by the vectors vi. This matrix has row rank
d by construction, so it also has column rank d, and in particular we may find a
d-by-d submatrix of M that is invertible. Reordering the columns, we may assume
without loss of generality that this submatrix consists of the first d columns, so
M = (D|E), where D is an invertible d-by-d matrix. Let u ∈ Fd2 be such that
uTD = (1, . . . , 1)− (y|D)T , where (y|D) is the vector given by first d coordinates of
y. Such a u exists since D is invertible. Then (uTM)T + y is a vector with d 1’s in
the first d coordinates, and since d > 2c

√
n we have (uTM)T + y /∈ A + A. But by

construction (uTM)T + y ∈ V + y, so we are done.

(6) Let B = Bohr(Γ; ρ) be a Bohr set of rank d and width ρ 6 1/2 inside a finite abelian
group G of order N .
(a) Show that if γ ∈ Γ then |1̂B(γ)| > 1

2
|B|.

(b) Deduce that |B| 6 4
d
N .

(c) Show that, for arbitrarily large d > 1 and N > 1, there exists a Bohr set B of
rank d and width ρ 6 1/2 in Z/NZ such that |B| � 1

d
N .

Solution: Part (a): By the triangle inequality we have

|1̂B(γ)| =
∣∣∣∑
b∈B

γ(−b)
∣∣∣ =

∣∣∣∑
b∈B

γ(b)
∣∣∣ >∑

b∈B

1−
∑
b∈B

|γ(b)− 1| > |B| − 1

2
|B| = 1

2
|B|

since ρ 6 1/2.
Part (b): From Parseval, we have

|B| = E
γ∈Ĝ
|1̂A(γ)|2 > 1

N

∑
γ∈Γ

|1̂A(γ)|2 > d

4N
|B|2.

Then rearrange.
Part (c). Consider the Bohr set with ρ = 1/2 and

Γ = {x 7→ e(j/N) : j = 1, 2, . . . , d}.

Then Bohr(Γ, ρ) ⊃ {0, 1, . . . , k} if k 6 N/(100d), say. Indeed, for 1 6 j 6 d and
0 6 i 6 k, we have

|e(ij/N)− 1| 6 π

2
‖ij/N‖ 6 π

200
< 1/2.

(7) Show that for any Bohr set B of rank d and dilate 0 < δ < 1/2, the Bohr set B is
(1/δ)O(d)-covered by its dilate Bδ.

Solution: Note that Bδ/2 − Bδ/2 ⊂ Bδ, so it will be enough to show that B is

(1/δ)O(d) covered by Bδ/2−Bδ/2. By the Ruzsa covering lemma, it would be enough
to show that

|B +Bδ/2| 6 (1/δ)O(d)|Bδ/2|.
Since B +Bδ/2 ⊂ B1+δ/2, it will be enough to show that

|B1+δ/2| 6 (1/δ)O(d)|Bδ/2|.
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But this follows from the result in lectures that |Bλ| > (λ/2)3d|B| for λ ∈ (0, 1).
Indeed, applying this result with λ = δ/2(1 + δ/2) we get

|Bδ/2| >
( δ

4(1 + δ/2)

)3d

|B1+δ/2| > δO(d)|B1+δ|

since δ < 1/2. Rearranging gives the required inequality.

(8) Let B be a regular Bohr set of rank d and width ρ 6 1/2.

(a) Show that for any η, δ > 0 if x ∈ Bδ and |1̂B(γ)| > η|B| then

|1− γ(x)| � δ

η
d.

Hint: Consider the difference 〈1B, γ〉 − 〈1B−x, γ〉.
(b) Deduce that if ∆ = {γ : |1̂B(γ)| > 1

2
|B|} then there is an absolute ocnstant c > 0

such that

Bcρ/d ⊂ Bohr(∆; ρ) ⊂ B.

Solution: For part (a), note that the statement is vacuous if η > 1, so we may
assume that η 6 1. Furthermore, by adjusting the implied constant in the conclusion,
without loss of generality we may assume that δ < 1/200d, since otherwise the
claimed upper bound on |1− γ(x)| is trivial.

Then on the one hand

|〈1B, γ〉 − 〈1B−x, γ〉| = |1̂B(γ)− γ(x)1̂B(γ)| = |1− γ(x)||1̂B(γ)| � |1− γ(x)|η|B|.

On the other hand.

|〈1B, γ〉 − 〈1B−x, γ〉| =
∣∣∣∑
y∈G

(1B − 1B−x)(y)γ(y)
∣∣∣

6 2|B 4 (B − x)|
� |(B −Bδ) \B|+ |(B +Bδ) \B|
� |B1+δ| − |B|
� δd|B|

since B is regular. Putting these together we get

|1− γ(x)|η|B| � δd|B|,

which rearranges to the required inequality.
For part (b), we know by Question 6(a) that ∆ ⊃ Γ, which in turn implies that

Bohr(∆; ρ) ⊂ B. For the other inclusion, we note that if x ∈ Bcρ/d (for some
small absolute c) and γ ∈ ∆, then by applying part(a) with η = 1/2 we get

|1 − γ(x)| � 2
(
cρ
d

)
d 6 ρ if c is chosen small enough. Hence Bcρ/d ⊂ Bohr(∆; ρ) as

required.

(9) Suppose we new the following for some functions D, δ : [0, 1] −→ R:

If A ⊂ Fnp is a subset of density α that contains no non-trivial three-term arithmetic
progressions then either
(a): |A| � pn/2 or
(b): there is a subspace V 6 Fnp of codimension 6 D(α) and a translate x such
that |(A− x) ∩ V |/|V | > (1 + δ(α))α.

(So that e.g. Lemma 15 in lectures is this with D(α) = 1 and δ(α) = α/4.)
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What upper bounds can you deduce for the maximal size of a subset of Fnp which
has no non-trivial three-term arithmetic progressions if...
(a) D(α)� α−1/2 and δ(α)� α1/2,
(b) D(α)� α−1 and δ(α)� 1, or
(c) D(α)� 1 and δ(α)� 1.

Solution:
As in lectures, we let k > 0 be maximal such that the following holds. There

is a sequence of sets A0, . . . , Ak and associated subspaces V0, . . . , Vk 6 Fnp , with
codimensions d0, . . . , dk, and translates x0, . . . , xk ∈ Fnp , for which

(i) A0 = A and V0 = Fnp , with d0 = 0 and x0 = 0
(ii) Ai ⊂ Vi + xi;

(iii) Ai has no non-trivial 3APs;
(iv) if αi = |Ai|/|Vi| then

αi+1 > (1 + δ(αi))αi;

(v) di+1 6 di +D(αi).
In all three cases below we will see that step (iv) guarantees that such a sequence of
sets A0, A1, . . . has finite length, and so it makes sense to talk of a maximal k.

We always have αi+m > (1 + mδ(αi))αi > 2αi if m > δ(αi), by Bernoulli’s in-
equality. We also conclude by the maximality of k that |Ak| � |Vk|1/2, and so
αk � |Vk|−1/2.

For part (a), we see that

dk 6
k−1∑
i=0

D(αi)�
k−1∑
i=0

α
−1/2
i � kα−1/2.

But k � α−1/2. This is since αi+m > 2αi if m > α
−1/2
i , and thus αl > 1 if

l >
∑100 log(1/α)/ log 2

j=0 (2jα)−1/2. This sum is � α−1/2 in size, and thus k � α−1/2

as claimed.
Therefore dk � α−1. This the same situation as in lectures, where we concluded

that

α 6 αk � |Vk|−1/2 = (pn−dk)−1/2 � pO(α−1)−n
2 .

Hence, rearranging and taking logs, we get

α�p n
−1

which was the same as in Meshulam’s theorem.

For part (b), we get

dk 6
k−1∑
i=0

D(αi)�
k−1∑
i=0

((1 + c)iα)−1 � α−1

for some absolute constant c. So again

α 6 αk � |Vk|−1/2 = (pn−dk)−1/2 � pO(α−1)−n
2 .

Rearranging and taking logs as before, we get

α�p n
−1,

i.e. the same bound.
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For part (c), such a strong increment would imply that k � log(1/α) and dk �
log(1/α) (by similar calculations as above). So

α� pO(log(1/α))−n
2 .

Taking logs and rearranging, we get

α 6 e−cpn

for some absolute cp > 0 (depending on the earlier O(1) constants). This matches
the shape of the bound that we now know to hold from the (non-Fourier analytic)
work of Croot–Lev–Pach.

(10) Suppose we knew the following for some functions
D, δ : [0, 1] −→ R, for any finite abelian group G of odd order:

Let B be a regular Bohr set of rank d and width ρ. If A ⊂ B is a subset of density
α that contains no non-trivial three-term arithmetic progressions then either (a):
|A| � (d/α)O(d)|B|1/2 or
(b):there is a regular Bohr set B′ ⊂ B of rank 6 d+D(α) and width� ρ(α/d)O(1)

and a translate x such that |(A− x) ∩B′|/|B′| > (1 + δ(α))α.

(So that e.g. Lemma 20 in lectures is this with D(α) = 1 and δ(α)� α.)

What upper bounds can you deduce for the maximal size of a subset of {1, . . . , N}
which has no non-trivial three-term arithmetic progressions if...
(a) D(α)� α−1/2 and δ(α)� α1/2,
(b) D(α)� α−1 and δ(α)� 1, or
(c) D(α)� 1 and δ(α)� 1.

Solution:
The set-up is very similar to the previous question. If A contains no non-trivial

3APs, then – since we seek an upper-bound for α – by restricting to a subset of
A we may assume that α < 1/2. As in lectures, we let k > 0 be maximal such
that the following holds. There is a sequence of sets A0, . . . , Ak and associated Bohr
sets B0, . . . , Bk with rank d0, . . . , dk and width ρ0, . . . , ρk, and a series of translates
x0, . . . , xk ∈ G, for which

(i) A0 = A and B0 = G with d0 = 1 and ρ = 2;
(ii) Ai ⊂ Bi + xi for all i;

(iii) Ai has no non-trivial 3APs;
(iv) if αi = |Ai|/|Bi| then

αi+1 > (1 + δ(αi))αi;

(v) di+1 6 di +D(αi);
(vi) ρi+1 � ρi(αi/di)

O(1).
We always have αi+m > (1+mδ(αi))αi > 2αi ifm > δ(αi). We also conclude by the

maximality of k that |Ak| � (dk/αk)
O(dk)|Bk|1/2, and so αk � (dk/αk)

O(dk)|Bk|−1/2.
For part (a), by the same calculation as in Q9(a) we get di 6 dk � α−1 and

k � α−1/2. Therefore

ρk �
k−1∏
i=0

(αi/di)
O(1) � (cα2)O(α−1/2) = αO(α−1/2)

since α < 1/2. Therefore by the usual lower bounds on the size of Bohr sets,

|Bk| �
(ρk

8

)dk
N � αO(α−3/2)N.



ADDITIVE COMBINATORICS EXAMPLES SHEET 2: SOLUTIONS 11

Combining the inequalities we get

α 6 αk �
( dk
αk

)O(dk)

|Bk|−1/2 �
(dk
α

)O(dk)

|Bk|−1/2 �
( 1

α

)O(α−1)

·
( 1

α

)O(α−3/2)

N−1/2

�
( 1

α

)O(α−3/2)

N−1/2.

Taking logs and rearranging we get logN � α−3/2 log(1/α), and hence

α�
( log logN

logN

)2/3

.

This is the same rough shape of bound (i.e. (logN)−2/3+o(1)) that was proved by
Bourgain in 2008.

For part (b), again the calculations go through as in Q9 to yield dk � α−1 and
k � log(1/α). Therefore

ρk � (α/dk)
O(k) � αO(log(1/α)).

The lower bound on |Bk| yields

|Bk| � αO(α−1 log(1/α))N.

Thus

α 6 αk �
(dk
α

)O(dk)

|Bk|−1/2 � αO(α−1) · αO(α−1 log(1/α))N � αO(α−1 log(1/α))N.

Taking logs and rearranging we get logN � α−1 log(1/α)2, and hence

α� (log logN)2

logN
.

For part (c), the calculations go through as in Q9 to yield dk � log(1/α) and
k � log(1/α). The bound for ρk becomes

ρk � (α log(1/α))O(log(1/α))

and the lower bound for |Bk| is

|Bk| � (α log(1/α))O(log(1/α)2)N.

Putting everything together exacly as above, we get

α� N−1/2(α log(1/α))O(log(1/α)2).

Taking logs and rearranging, one ends up with the inequality

α� e−c(logN)1/3

for some absolute c > 0.
This is the dream density increment, but still doesn’t match the best known lower

construction. This is still due, essentially, to Behrend in the 40s, which shows that
there is an example of a set A ⊂ Z/NZ and |A| � N exp(−c(logN)1/2) with no
non-trivial 3APs.

(11) Let m > 2 and p > m be prime.
(a) Sketch a proof that if A ⊂ Fnp is a set of density α which has no solutions to

x1 + · · · + xm = my with x1, . . . , xm, y ∈ A all distinct, then there is some
constant cm > 0 depending only on m such that either
• |A| � (pn)1−cm , or
• there is a subspace V 6 Fnp of codimension 1 and a translate x such that

|(A− x) ∩ V |/|V | > (1 + cmα
1

m−1 )α.
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(b) Deduce that if A ⊂ Fnp contains no solutions to x1 + · · · + xm = mym with all
variables distinct then

|A| �p,m
pn

nm−1
.

Solution: For ease of notation we write G = Fnp . For part (a), the number of solu-
tions to x1+· · ·+xm = my with x1, . . . , xm, y ∈ A is equal to

∑
x1,xm,y∈G

∏m
i=1 1A(xi)Eγ∈Ĝ γ(x1+

· · ·+ xm −my), in which in turn equals

E
γ∈Ĝ

( m∏
i=1

∑
xi∈G

1A(xi)γ(xi)
)(∑

y∈G

1A(y)γ(−my)
)

= E
γ∈Ĝ

( m∏
i=1

1̂A(γ)
)

1̂A(γm),

where γm ∈ Ĝ is the character given by x 7→ γ(mx).
The term with γ being the trivial character gives a contribution of |A|m+1/|G|,

which is αm+1pnm. Now, the number of trivial solutions to the equation (in which
some of the variables are the same) is O(m2(pn)m−1), as is seen by summing over all
pairs of variables that could be equal and extending the range of the variables to the
whole of G. Therefore, since A contains no non-trivial solutions to the equation, we
conclude that

1

pn

∑
γ 6=1

|1̂A(γ)|m|1̂A(γm)| > αm+1pnm −O(m2pn(m−1)).

There are now two cases. If we havem2pn(m−1) � αm+1pnm then α� m2/(m+1)p−n/(m+1),
and thus |A| � pn(1−cm) for some cm (as in case 1 of the claim).

Otherwise we may assume that

1

pn

∑
γ 6=1

|1̂A(γ)|m|1̂A(γm)| � αm+1pnm.

By taking out m− 1 factors from the power, we get

αm+1pnm � (max
γ 6=1
|1̂A(γ)|)m−1 E

γ
|1̂A(γ)||1̂A(γm)|

� (max
γ 6=1
|1̂A(γ)|)m−1(E

γ
|1̂A(γ)|2)1/2(E

γ
|1̂A(γm)|2)1/2

� |A|(max
γ 6=1
|1̂A(γ)|)m−1

� αpn(max
γ 6=1
|1̂A(γ)|)m−1

where the penultimate line follows by Parseval.
Therefore

(max
γ 6=1
|1̂A(γ)|)� αpn(α1/(m−1)).

By the usual argument from lectures, this means that there is a subspace V and
a translate x with the desired property.

For part (b), as ever we let k > 0 be maximal such that the following holds.
There is a sequence of sets A0, . . . , Ak and associated subspaces V0, . . . , Vk 6 Fnp ,
with codimensions d0, . . . , dk, and translates x0, . . . , xk ∈ Fnp , for which

(i) A0 = A and V0 = Fnp , with d0 = 0 and x0 = 0
(ii) Ai ⊂ Vi + xi;

(iii) Ai had no non-trivial 3APs;
(iv) if αi = |Ai|/|Vi| then

αi+1 > (1 + cα1/(m−1))αi;
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(v) di+1 6 di + 1.

We always have αi+m > (1 + cmα
1/(m−1)
i )αi > 2αi if m > c−1α

−1/(m−1)
i . Therefore

dk 6
∑100 log(1/α)/ log 2

j=0 c−1(2jα)−1/(m−1) �m α−1/(m−1).

We also conclude by the maximality of k that |Ak| � |Vk|1−cm , and so αk �
|Vk|−cm .

Therefore
α 6 αk � p−cm(n−dk) � pOm(α−1/(m−1))−cmn.

Taking logs and rearranging we get α−1/(m−1) �m,p n, which yields α �m,p n
−(m−1)

as claimed.

Of course much better bounds are now known in Fnp by the polynomial method
of Croot–Lev–Pach–Ellenberg–Gijswijt. However, even in Z/NZ, much stronger
bounds are now available by analytic and combinatorial methods. Indeed, Schoen–
Shkredov (Roth’s theorem in many variables, Israel Journal of Mathematics, 199, 287-
308) proved that if A ⊂ Z/NZ lacks non-trivial solutions to x1+x2+x3+x4+x5 = 5y,

say, then |A| � N exp−(logN)1/7 .
The idea behind this method is to use the fact that 2A−2A contains a large Bohr

set B (see material on Freiman’s theorem), and so really the system looks more like
b + x5 = 5y. From this one can generate an extremely large density increment onto
a translate of B.


