
ADDITIVE COMBINATORICS EXAMPLES SHEET 3: SOLUTIONS

ALED WALKER

These are the ‘official’ solutions for the third example sheet. This is not to say that they
cannot be improved, nor that there are no alternative approaches, nor that there won’t be
the occasional small oversights or omissions! Nevertheless, this document should hopefully
serve as a record of how to do all the questions, and be useful when it comes to your future
revision and study.

If you have any questions about any of these solutions, please drop me an email at
aw530@cam.ac.uk.

For Question 1 (c), I was not quite able to recover the bound that was stated in the
question – I’m off by a factor of 2. I hope that one of you will tell me in the examples class
where I was being stupid!

(1) This question indicates how (weaker) almost-periodicity results can be proved using
only Fourier analysis. Let G be a finite abelian group of order N and A ⊂ G with
density α = |A|/N .
(a) For any 0 6 η 6 1 let

∆η(A) = {γ ∈ Ĝ : |1̂A(γ)| > η|A|}.

Use Parseval’s identity to show that |∆η(A)| 6 η−2α−1.
(b) Show that the set of L2-almost periods of 1A ∗ 1A with error ε|A|3/2 contains a

Bohr set of rank O(ε−2α−1) and width� εα1/2. [In fact, we will show that width
� ε is possible.]

(c) Generalise your solution to part (b) to show that for any m > 1 the set of
L2m-almost periods of 1A ∗ 1A with error ε|A|1+1/2m contains a Bohr set of rank
O(ε−2mα−1) and width � εα1/2m. [In fact, we will show that width � ε is
possible, but only for an error 3ε|A|1+1/2m.]

(d) How does this compare to the Bohr set found by Theorem 10, the almost-
periodicity result proved in lectures?

Solution: Part(a). Note that

αN = |A| = ‖1A‖2
2 = ‖1̂A‖2

2 >
1

N
|∆η(A)|(η|A|)2 = α2η2N |∆η(A)|.

Rearranging gives |∆η(A)| 6 η−2α−1 as desired.

For part (b), for an arbitrary t ∈ G we have

‖τt(1A ∗ 1A)− 1A ∗ 1A‖2
2 = 〈τt(1A ∗ 1A)− 1A ∗ 1A, τt(1A ∗ 1A)− 1A ∗ 1A〉G

= 〈 ̂τt(1A ∗ 1A)− 1̂A ∗ 1A, ̂τt(1A ∗ 1A)− 1̂A ∗ 1A〉Ĝ
= 〈(ft − 1)(1̂A)2, (ft − 1)(1̂A)2〉Ĝ
= E

γ
|1̂A(γ)|4|γ(t)− 1|2,

1
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where ft(γ) := γ(t). Now suppose that t ∈ Bohr(∆ε/10(A), ε/2). Then

E
γ
|1̂A(γ)|4|γ(t)− 1|2 =

1

N

∑
γ∈∆ε(A)

|1̂A(γ)|4|γ(t)− 1|2 +
1

N

∑
γ /∈∆ε(A)

|1̂A(γ)|4|γ(t)− 1|2

6
ε2

4N

∑
γ

|1̂A(γ)|4 +
4

N

(ε|A|
10

)2∑
γ

|1̂A(γ)|2

6
ε2|A|3

4
+
ε2|A|3

25
6 ε2|A|3.

This is since

E
γ
|1̂A(γ)|4 = |{a1, a2, a3, a4 ∈ A : a1 + a2 = a3 + a4}| 6 |A|3

and Eγ |1̂A(γ)|2 =
∑

x 1A(x)2 = |A|. Therefore t is an L2-almost period for 1A ∗ 1A
with error ε|A|3/2. Since |∆ε/10(A)| � ε−2α−1 by part (a), Bohr(∆ε/10(A), ε/2) has
rank O(ε−2α−1) and width � ε as required.

For part (c), Fourier expanding we get that ‖τt(1A ∗ 1A)− 1A ∗ 1A‖2m
2m is equal to∑

x

∣∣∣E
γ
(γ(t)− 1)γ(x)1̂A(γ)2

∣∣∣2m
= E

γ1,...,γm
ρ1,...,ρm

∏
i6m

(γi(t)− 1)1̂A(γi)
2
∏
j6m

(ρj(t)− 1)1̂A(ρj)2
∑
x

∏
i6m

γi(x)
∏
j6m

ρj(x)

6
1

N2m−1

∑
γ1,...,γm
ρ1,...,ρm∏
γi=

∏
ρj

∏
i6m

|γi(t)− 1||1̂A(γi)|2
∏
j6m

|ρj(t)− 1||1̂A(ρj)|2. (1)

Now suppose that t ∈ Bohr(∆εm/100(A), ε). The contribution to the sum (1) when
all γ1, . . . , γm, ρ1, . . . , ρm ∈ ∆εm/100(A) is at most

1

N2m−1
ε2m

∑
γ1,...,γm
ρ1,...,ρm∏
γi=

∏
ρj

∏
i6m

|1̂A(γi)|2
∏
j6m

|1̂A(ρj)|2.

Applying the L∞ bound |1̂A(ρ2m)|2 6 |A|2, we get an upper bound of

1

N2m−1
ε2m|A|2

∑
γ1,...,γm
ρ1,...,ρm−1

∏
i6m

|1̂A(γi)|2
∏

j6m−1

|1̂A(ρj)|2

6 ε2m|A|2+2m−1 = ε2m|A|2m+1

by Parseval.
Now consider the contribution to the sum (1) when at least one out of the charac-

ters γ1, . . . , γm, ρ1, . . . , ρm is not in ∆εm/100(A). Let σ be this character. Then, using

the trivial bounds |γi(t)− 1| 6 2, |ρj(t)− 1| 6 2, and |1̂A(σ)|2 6 (εm|A|/100)2, and
renaming indices, we may upper bound the contribution to (1) by

2m · 22m

N2m−1

(εm|A|
100

)2 ∑
γ1,...,γm
ρ1,...,ρm−1

∏
i6m

|1̂A(γi)|2
∏

j6m−1

|1̂A(ρj)|2

6
22m+1mε2m

1002
|A|2+2m−1,
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by Parseval, as above. So therefore we conclude that

‖τt(1A ∗ 1A)− 1A ∗ 1A‖2m
2m 6 ε2m|A|2m+1

(
1 +

22m+1m

1002

)
,

and hence
‖τt(1A ∗ 1A)− 1A ∗ 1A‖2m 6 3ε|A|1+1/2m.

So τ is an L2m -almost period of 1A ∗ 1A with error 3ε|A|1+1/2m. And by part (a),
the rank of the Bohr set Bohr(∆εm/100(A), ε) is O(ε−2mα−1).

For part (d), we look to applying Theorem 10 with f = 1A∗1A. In this case, ‖f̂‖1 =

|A| = αN . So, having an error 3ε|A|1+1/2m is like having an error 3εα1/2m‖f̂‖1N
1/2m.

Applying Theorem 10, this gives a Bohr set of L2m almost periods with error 3ε|A|1+1/2m

with rank O(mε−2α−
1
m ) and width � εα1/2m. We got a narrower width in our solu-

tion here, but with a massively larger rank O(ε−2mα−1).

(2) Show that if A, B, C are sets with |C| > |B| such that there is S with |A+S| 6 K|A|
then the set T of L∞-almost periods for 1A ∗ 1B ∗ 1C with error ε|A||B| has size

|T | � exp(−O(ε−2(1 + log(
|C|
|B|

)) logK))|S|.

Solution: Let m be a natural number with
1

2
(1 + log(|C|/|B|)) 6 m 6 1 + log(|C|/|B|).

Observe that

max
x
|τt(1A ∗ 1B ∗ 1C)− 1A ∗ 1B ∗ 1C |

= max
x

∣∣∣∑
y,z

(1A(y)1B(z)1C(x+ t− y − z)− 1A(y)1B(z)1C(x+−y − z))
∣∣∣

= max
x

∣∣∣∑
z

1B(z)
∑
y

(1A(y)1C(x+ t− y − z)− 1A(y)1C(x− y − z))
∣∣∣

6 max
x

(∑
z

1B(z)
2m

2m−1

) 2m−1
2m
(∑

z

(∑
y

(1A(y)1C(x+ t− y − z)− 1A(y)1C(x− y − z))
)2m) 1

2m

= |B|1−
1

2m‖τt(1A ∗ 1C)− 1A ∗ 1C‖2m.

Suppose that t is an L2m-almost period of 1A ∗ 1C with error 1
100
ε|A||C| 1

2m . Then

‖τt(1A ∗ 1B ∗ 1C)− 1A ∗ 1B ∗ 1C |‖∞ 6
1

100
ε|A||B|1−

1
2m |C|

1
2m

=
1

100
ε|A||B|

( |C|
|B|

) 1
2m

< ε|A||B|.
So τ is an L∞ almost period of 1A∗1B∗1C with error ε|A||B|. Finally, by Theorem 12
from lectures, the number of such almost periods t is at least exp(−O(ε−2m) logK))|S|,
as required.

(3) Suppose that |A| and x are such that 1A ∗ 1A ∗ 1A(x) > δ|A|2. Suppose further that
there is some S such that |A + S| 6 K|A|. Show that, for any k > 1, there is a
symmetric set X such that

x+ kX ⊂ A+ A+ A
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and

|X| > exp(−O(k2δ−2 logK))|S|.
Solution: This follows from the previous question. Indeed, let X be the set of L∞

almost periods for 1A ∗ 1A ∗ 1A with error δ
2k
|A|2. From the previous question we

have

|X| > exp(−O(k2δ−2 logK))|S|.
However, if t ∈ kX, write t = t1 + · · · + tk with ti ∈ X for all i. Let t0 := 0. Then,
by the triangle inequality,

|1A ∗ 1A ∗ 1A(x+ t)− 1A ∗ 1A ∗ 1A(x)| 6
∑
i6k

|1A ∗ 1A ∗ 1A(x+ ti)− 1A ∗ 1A ∗ 1A(x+ ti−1)|

6 k · δ
2k
|A|2

=
δ

2
|A|2.

Since 1A ∗ 1A ∗ 1A(x) > δ|A|2 we conclude that

1A ∗ 1A ∗ 1A(x+ t) >
δ

2
|A|2 > 0.

Hence x+ t ∈ A+ A+ A, and so x+ kX ⊂ A+ A+ A.

(4) Show that if A,B ⊂ Fnp with densities α, β respectively then A+B contains a coset
of a subspace of dimension � αβn/ log p.

Solution: Let N = pn be the size of the group, and let f = 1A ∗ 1B. Then

‖f̂‖1 = E
γ
|1̂A(γ)||1̂B(γ)| 6 (E

γ
|1̂A(γ)|2)

1
2 (E

γ
|1̂B(γ)|2)

1
2 = |A|

1
2 |B|

1
2 = α

1
2β

1
2N.

Let T be the set of L2m-almost periods of f with error 1
4
α

1
2β

1
2‖f̂‖1N

1
2m . We know

from Theorem 10 in lectures, applied to ε = 1
4
α

1
2β

1
2 , that T contains a Bohr set

of rank O(mα−1β−1) and width � α
1
2β

1
2 . So certainly T contains a subspace V of

codimension O(mα−1β−1).
Next, let W ⊂ T be any subset. Then, for a natural number m to be chosen later,∑

x

sup
t∈W
|1A ∗ 1B(x+ t)− 1A ∗ 1B(x)| 6

∑
x

(∑
t∈W

|1A ∗ 1B(x+ t)− 1A ∗ 1B(x)|2m
) 1

2m

6 N1− 1
2m

(∑
x

∑
t∈W

|1A ∗ 1B(x+ t)− 1A ∗ 1B(x)|2m
) 1

2m

6 N1− 1
2m |W |

1
2m max

t∈W
‖τt(1A ∗ 1B)− 1A ∗ 1B‖2m

6 N1− 1
2m |W |

1
2m · α

1
2β

1
2

4
‖f̂‖1N

1
2m

6 |W |
1

2m
αβN2

4
< αβN2

provided |W | < 42m. Since∑
x

1A ∗ 1B(x) = αβN2,
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we conclude that there is some x for which

sup
t∈W
|1A ∗ 1B(x+ t)− 1A ∗ 1B(x)| < 1A ∗ 1B(x).

Hence 1A ∗ 1B(x+ t) > 0 for all t ∈ W , and so x+W ⊂ A+B.
The rest of the proof is just sorting out the quantitative details. Let 10 < C1 =

O(1) be a fixed constant such that dim(V ) > n−C1mα
−1β−1. If nαβ 6 100C1 then

the conclusion of the theorem is trivial, so without loss of generality nαβ > 100C1.
Now let c < 1/100 be a small constant (to be chosen later, depending on C1). Let

C be a large parameter with the following properties: C1 6 C < 2C1 and

nαβ

C

(
1− cαβ

log p

)
∈ N.

This is possible, since

nαβ

C1

(
1− cαβ

log p

)
> 50.

Now let

m =
nαβ

C

(
1− cαβ

log p

)
.

In this case

dimV > n− Cmα−1β−1 = c
αβn

log p
.

Let W 6 V be a subspace with dimension

c
αβn

log p
− 1 6 dimW 6 c

αβn

log p
.

It is enough to show that

|W | < 42m

if c is small enough, since then x+W ⊂ A+B by the above argument.
We can calculate

log(42m/|W |) > 2m log 4− (dimW ) log p

>
2nαβ log 4

C

(
1− c αβ

log p

)
− cαβn

> αβn
( log 4

C1

(
1− c 1

log p

)
− c
)

> 0

if c is small enough. So we are done.

(5) Let G be a finite abelian group and A ⊂ G have density α = |A|/|G|. Let ε > 0 and
T be the set of L2-almost periods of 1A × 1A with error ε|A|3/2.
(a) Show that if ε > 2 then T = G.

(b) Show that |T | � αO(ε−2)N .
(c) Show that T contains a Bohr set of rank O(ε−2α−1) and width � εα1/2.
(d) Show that if ∆η(A) is defined as in Question 1 then, for any η > 0 the set of

almost-periods T is contained inside the Bohr set with frequency set ∆η(A) and
width η−2εα−1/2.
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Solution: For part (a), for an arbitrary t ∈ G note that

‖τt(1A ∗ 1A)− 1A ∗ 1A‖2 6 ‖τt(1A ∗ 1A)‖2 + ‖1A ∗ 1A‖2

= 2‖1A ∗ 1A‖2

= 2
(∑
x∈G

( ∑
a1+a2=x

1A(a1)1A(a2)
)2)1/2

= 2
( ∑
a1+a2=a3+a4

1A(a1)1A(a2)1A(a3)1A(a4)
)1/2

6 2|A|3/2.

So t is an L2 almost period of 1A ∗ 1A with error 2|A|3/2.
For part (b), this is just the result of Theorem 11 from lectures with m = 1. Part

(c) was just part (a) of Question 1.
For part (d), suppose that ‖τt(1A ∗ 1A)− 1A ∗ 1A‖2 6 ε|A|3/2. Then

ε2|A|3 > 〈τt(1A ∗ 1A)− 1A ∗ 1A, τt(1A ∗ 1A)− 1A ∗ 1A〉G

= 〈 ̂τt(1A ∗ 1A)− 1̂A ∗ 1A, ̂τt(1A ∗ 1A)− 1̂A ∗ 1A〉Ĝ
= 〈(ft − 1)(1̂A)2, (ft − 1)(1̂A)2〉Ĝ

=
1

N

∑
γ

|1̂A(γ)|4|γ(t)− 1|2,

where ft(γ) = γ(t). If γ ∈ ∆η(A) we conclude that

ε2|A|3 > 1

N
|1̂A(γ)|4|γ(t)− 1|2 > η4α4N3|γ(t)− 1|2.

Hence |γ(t)− 1| 6 εα−1/2η−2 as required.

(6) (a) Show that if X ⊂ Fn3 is a symmetric set (so X = −X) such that 0 ∈ X and
which contains at least k elements which are linearly independent over F3 then
kX contains a subspace of dimension k.

(b) Show that if K > 4 and A ⊂ Fn3 satisfies |A + A| 6 K|A| then A + A − A − A
contains a subspace of dimension �

√
log |A|/ logK.

Solution: For part (a), let Y ⊂ X with |Y | = k and Y being linearly independent
over F3. Then −Y ∪ {0} ∪ Y ⊂ X, since X is symmetric and contains 0. Therefore,
writing

V = {
∑
i6k

εiyi : εi ∈ {−1, 0, 1}},

we have V ⊂ kX. But V = spanF3(Y ). Hence V has dimension k, as desired.

For part (b), let C and c be certain absolute constants, with C large enough and c
small enough for what follows. Without loss of generality we may also assume that√

log |A|/ logK is large enough in terms of c and C. Since K > 4, this contains the
assumption that |A| is large enough in terms of c and C.

Now, we know from Theorem 13 that A+ A− A− A contains a set kT with

|T | > exp(−Ck2(logK)2)|A|.
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Choose an integer k in the range c
2

√
log |A|

logK
6 k 6 c

√
log |A|

logK
. Such an integer exists

since log |A|
logK

is large enough. Then we get

|T | > exp(−Cc2 log |A|) > |A|0.99

if c is small enough. Hence T contains a linearly independent set of size at least
log(|A|0.99)/ log(3), which is at least k (as |A| is large). By part (a), kT contains a
subspace of dimension k.

(7) Let f : G −→ C. In Lemma 26 we found by random sampling a function g which was

the linear combination of O(mε−2) characters such that ‖f − g‖2m 6 ε‖f̂‖1N
1/2m.

In this exercise we provide an example that shows that the linear dependence on m
is necessary.

Let 2m 6 n and choose some linearly independent γ1, . . . γ2m ∈ Fn2 . We write
N = 2n for the size of the group as usual. Let f(x) = 1

2m
(γ1(x) + · · ·+ γ2m(x)). Out

of all those functions which are linear combinations of 6 m characters, let g be such
that ‖f − g‖2m is minimal.
(a) Show that without loss of generality, the characters in g are from the subspace

spanned by γ1, . . . , γ2m.
(b) Show that N1/2m|1− g(0)| 6 2‖f − g‖2m.
(c) Let V 6 Fn2 be the subspace orthogonal to those characters in the definition of

g. Show that(∑
x∈V

|f(x)− g(x)|2m
)1/2m

>
(1

2
− |1− g(0)|

)
|V |1/2m.

(d) Deduce that

‖f − g‖2m >
1

8
‖f̂‖1N

1/2m.

Solution: Part (a). Let W 6 Fn2 be the intersection of the kernels of γ1, . . . , γ2m.
Then f ∗ 1

|W |1W = f . Furthermore, g ∗ 1
|W |1W is a linear combination of characters

from the subspace spanned by γ1, . . . , γ2m. This is since the Fourier transform of
g ∗ 1

|W |1W is 1
|W | ĝ1̂W and

1̂W (γ) =
∑
x∈W

γ(x) =

{
|W | if γ|W is the trivial character,

0 otherwise

since W is a subspace. By dimension counting, γ|W is trivial if and only if γ is in
spanF2

(γ1, . . . , γ2m).
Write g′ := g ∗ 1

|W |1W . Then, by Young’s inequality

‖f − g′‖2m = ‖ 1

|W |
1W ∗ (f − g)‖2m 6 ‖ 1

|W |
1W‖1‖f − g‖2m = ‖f − g‖2m.

So, replacing g by g′, we may assume that g is a linear combination of characters
from the subspace spanned by γ1, . . . , γ2m.

Part (b). Let W be as in part (a). Then

‖f − g‖2m
2m >

∑
x∈W

|f(x)− g(x)|2m =
∑
x∈W

|f(0)− g(0)|2m = 2−2mN |1− g(0)|2m.

Taking 2mth-roots gives the claimed bound.
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Part (c). With V as given, we have(∑
x∈V

|f(x)− g(x)|2m
)1/2m

>
(∑
x∈V

|f(x)− 1|2m
)1/2m

−
(∑
x∈V

|g(x)− 1|2m
)1/2m

by the triangle inequality. By definition of V we have(∑
x∈V

|g(x)− 1|2m
)1/2m

= |V |1/2m|g(0)− 1|.

By Jensen’s inequality, we have(∑
x∈V

|f(x)− 1|2m
)1/2m

= |V |1/2m
( 1

|V |
∑
x∈V

|f(x)− 1|2m
)1/2m

> |V |1/2m
( 1

|V |
∑
x∈V

|f(x)− 1|
)

= |V |1/2m
(

1− 1

|V |
∑
x∈V

f(x)
)

= |V |1/2m
(

1− 1

2m

∑
i62m

1

|V |
∑
x∈V

γi(x)
)
,

since f(x) ∈ [−1, 1] for all x. Now, we have

1

|V |
∑
x∈V

γi(x) =

{
1 if γi|V is the trivial character;

0 otherwise.

Since V has codimension at most m, there are at most m values of i for which γi|V
is the trivial character. So(∑

x∈V

|f(x)− 1|2m
)1/2m

> |V |1/2m
(

1− 1

2m
m) >

1

2
|V |1/2m.

Combining everything we have

‖f − g‖2m >
(1

2
− |g(0)− 1|

)
|V |1/2m

as claimed.

Part (d). We have ‖f̂‖1 = 1. If |1 − g(0)| > 1/4, from part (b) we have
‖f−g‖2m > 1

8
N1/2m, as claimed. Otherwise, we have from part (c) that ‖f−g‖2m >

1
4
|V |1/2m > 1

4
(N2−m)1/2m > 1

8
N1/2m too.

(8) We say that a set D ⊂ G is dissociated if all 3|D| sums of the form
∑

x∈D cxx where
cx ∈ {−1, 0, 1} are distinct. Fix some dissociated set D.
(a) Show that for any ε ∈ {−1, 1}D, if

Pε(γ) =
∏
x∈D

(1 + <(εxγ(x)))

then Eγ |Pε(γ)| = 1.
(b) Show that for any f : D −→ C and ε ∈ {−1, 1}D, if

Fε(γ) =
∑
x∈D

εxf(x)γ(x),

then f̂ = 2Fε ∗ Pε.
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(c) Combining parts (a) and (b) with the ideas in the proof of the Marcinkiewicz–
Zygmund inequality, prove Rudin’s inequality: if D is dissociated then for any
f : D −→ C and any m > 1,

‖f̂‖2m � m1/2‖f‖2.

Solution: For part (a), let span(D) = {
∑

x∈D cxx : cx ∈ {−1, 0, 1}}. By assumption

| span(D)| = 3|D|. Note that 1 + <(εxγ(x)) > 0 for all ε, γ, x, so

E
γ
|Pε(γ)| = E

γ
Pε(γ) = E

γ

∏
x∈D

(1 +
1

2
εxγ(x) +

1

2
εxγ(−x)).

Multiplying out the product, we get

E
γ

∑
y∈span(D)

γ(y)
∏
x∈Sy

εx
2
,

where, writing y =
∑

x∈D cxx with cx ∈ {−1, 0, 1} in the unique way, Sy is the set of
x ∈ D for which cx ∈ {−1, 1}. Swapping the sums, the only non-zero contribution
comes from when y = 0, i.e.

E
γ

∑
y∈span(D)

γ(y)
∏
x∈Sy

εx
2

=
∑

y∈span(D)

∏
x∈Sy

εx
2
E
γ
γ(y) = E

γ
γ(0) = 1

as claimed.
For part (b), we abuse notation somewhat and let F̂ε : G −→ C denote the inverse

Fourier transform of Fε (and similarly for other functions defined on Ĝ). Then

F̂ε(x) = E
γ
Fε(γ)γ(x)

= E
γ

(∑
y∈D

εyf(y)γ(y)
)
γ(x)

=
∑
y∈D

εyf(y)E
γ
γ(x− y)

=
∑
y∈D

εyf(y)1y=x,

and so

F̂ε(x) =

{
εxf(x) if x ∈ D
0 otherwise.

.

Also,

P̂ε(x) = E
γ

∏
y

(1 +
1

2
εyγ(y) +

1

2
εyγ(−y))γ(x)

=
∑

z∈span(D)

∏
y∈Sz

εy
2
E
γ
γ(x− z)

=
∑

z∈span(D)

∏
y∈Sz

εy
2

1x=z.

For x ∈ D, this is just εx/2. Therefore, since f is supported on D,

f = 2F̂εP̂ε.

Taking Fourier transforms, we get

f̂ = 2Fε ∗ Pε
as claimed.
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For part (c), we note that by Young’s convolution inequality

‖Fε ∗ Pε‖2m � ‖Fε‖2m‖Pε‖1 6 ‖Fε‖2m.

Hence, by part (b), ‖f̂‖2m � ‖Fε‖2m for all ε ∈ {−1, 1}D. So

‖f̂‖2m
2m 6 C2m E

ε
‖Fε‖2m

2m

for some absolute constant C.
Now,

E
ε
‖Fε‖2m

2m = E
ε
E
γ

∣∣∣∑
x∈D

εxf(x)γ(x)
∣∣∣2m

= E
γ

∑
x1,...,xm∈D
y1,...,ym∈D

∏
i6m

f(xi)γ(xi)
∏
j6m

f(yj)γ(yj)E
ε

∏
i6m

εxi
∏
j6m

εyj

The inner sum Eε
∏

i6m εxi
∏

j6m εyj vanishes unless every element of D which is

listed in (x1, . . . , xm, y1, . . . , ym) appears to an even order, in which case the inner
sum equals 1. So we may upper bound the expression above by∑

l6m

∑
x1,...,xl∈D

∑
k1+···+kl=m

(
2m

2k1, . . . , 2kl

)∏
i6l

|f(xi)|2ki .

As in the proof of the Marcinkiewicz–Zygmund inequality in lectures, this is at most

mm
(∑

x∈D |f(x)|2
)m

, since by comparing binomial coefficients

(2m)!

(2k1)! · · · (2kl)!
6

(2m)!

2mm!

m!

k1! · · · kl!
6 mm m!

k1! · · · kl!
.

Therefore

‖f̂‖2m 6 C2mmm‖f‖2m
2 ,

and the result follows by taking 2mth-roots.

(9) Let the dimension of a set A, denoted by dim(A), be the size of the largest dissociated
subset of A.
(a) Show that if X is a dissociated set then for all k > 1 we have |kX| > (Ck)−k|X|k

for some absolute constant C > 0.
(b) Deduce that if |A+ A| 6 K|A| then dim(A)� K log |A|.
(c) Use the above ideas combined with Theorem 13 from lectures to show that if
|A+ A| 6 K|A| then there exists a set X ⊂ A of size

|X| > exp(−O((logK)4))|A|
such that dim(X)� log |A|.

Solution: Part (a). There are two approaches here. Either observe that ‖1̂X‖2k
2k =

E2k(X) = #x1 + · · ·+ xk = xk+1 + · · ·+ x2k. By Cauchy-Schwarz,

|X|k =
∑
g∈kX

|{(x1, . . . , xk) ∈ Xk : x1 + · · ·+ xk = g}| 6 |kX|1/2(E2k(X))1/2.

Finally, rearranging and using Rudin’s inequality, there is some constant C for which

|kX| > |X|2k

E2k(X)
>

|X|2k

(Ck1/2)2k‖1X‖2k
2

= (C2k)−k|X|k

as required.
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Alternatively, here is a more hands-on approach. Assume that |X| > 100k, else
the conclusion is trivial. Let k∧X denote the restricted sum set, i.e k∧X = {x1 +
· · · + xk : xi ∈ X distinct.}. We claim that |k∧X| > k−k(|X| − k)k. Indeed, if
g = x1 + · · ·+ xk = y1 + · · ·+ yk, with the xi ∈ X distinct and the yi ∈ X distinct,
then 0 = x1 + · · · + xk − y1 − · · · − yk ∈ span(X), contradicting the fact that X is
dissociated unless (y1, . . . , yk) is a permutation of (x1, . . . , xk). Hence

|k∧X| > k−k|{(x1, . . . , xk) ∈ Xk : all indices distinct}|
> k−k(|X| − k)k

> (Ck)−k|X|k

as claimed.

For part (b), let X be the largest dissociated subset of A. Then by Plünnecke and
part (a), for all k > 1 we have

(Ck)−k dim(A)k 6 |kX| 6 |kA| 6 Kk|A|.
Hence dim(A) 6 CKk|A|1/k. Choosing k � log |A| we derive dim(A)� K log |A| as
desired.

For part (c), let k � (logK) and let T be the set of almost periods used in Theorem
13, for which kT ⊂ A+ A− A− A and |T | > exp(−O((logK)4))|A|.

There is another fact about T which follows from the proof of Theorem 12 (which
we used to construct the almost periods used in Theorem 13), namely that T may
be taken to lie within a translate of A.

Then klT ⊂ 2lA − 2lA, so |klT | 6 K4l|A| for all l > 1, by Plünnecke. Now,
let X be a translate of T with X ⊂ A. We have |klX| 6 K4l|A| and |X| >
exp(−O((logK)4))|A| too.

Let Y ⊂ X be a dissociated set of maximal size. Then

(Ckl)−kl dim(X)kl = (Ckl)−kl|Y |kl 6 |klY | 6 |klX| 6 K4l|A|.
So

dim(X) 6 CklK
4
k |A|

1
kl � Ckl|A|

1
kl

since k � logK. Letting l � k−1 log |A|, we get

dim(X)� log |A|
as required.


