Additive Combinatorics Sheet 4

Lent Term 2021

Instructions

- These exercises are concerned with the material developed in Chapter 4: arithmetic progressions, Freiman isomorphisms, Bogolyubov-Ruzsa lemmas, and the Freiman-Ruzsa-Sanders inverse theorems and applications.
- There are 8 exercises, of varying (and non-monotone) difficulty and length. You are not expected to do them all, but I have provided 8 for the enthusiast. If you have solved any 4 then this should be sufficient evidence (for yourself) that are you where you should be.
- The examples class will be run by Aled Walker, who will mark before the class your solutions to 2 exercises.
- The two exercises to be marked should be submitted by **9am Monday 3rd May**. The class is **3:30pm Wednesday 5th May**. You should only submit the two solutions to be marked.
- Dr. Walker would appreciate knowing in advance of the class which exercises you found the most challenging. To this end, please submit the Self-Assessment form on Moodle before the class (even if you have not submitted any work to be marked).
- 1. Let

$$P = \{a + n_1v_1 + \dots + n_dv_d : 0 \le n_i \le N_i\}$$

be a generalised arithmetic progression of rank d in \mathbb{Z} . Let

$$\Gamma = \{(m_1, \dots, m_d) \in \mathbb{Z}^d : m_1 v_1 + \dots + m_d v_d = 0 \text{ and } |m_i| < N_i\}.$$

Recall that the volume of P is defined to be $vol(P) = \prod_i N_i$. Show that

$$\frac{\operatorname{vol}(P)}{|P|} \le |\Gamma| \le 3^d \frac{\operatorname{vol}(P)}{|P|}.$$

- 2. Let P be a proper generalised arithmetic progression of rank d, and suppose $X \subset P$ has size $|X| \leq \epsilon |P|$. Show that $P \setminus X$ contains a proper generalised arithmetic progression Q of rank d with $|Q| \geq \epsilon^{-1} C^{-d}$ for some constant C.
- 3. (a) Show that for any $s \ge 1$ and $d \ge 1$ every finite subset of \mathbb{Z}^d is Freiman s-isomorphic to a subset of \mathbb{Z} .
 - (b) Hence deduce a Freiman-Ruzsa-Sanders inverse result for subsets of \mathbb{Z}^d with small doubling.
- 4. (a) Suppose that $A \subset \{1, ..., N\}$ is such that $|A| = n \leq \log \log N$. Show that, if n is sufficiently large, then there exists a prime p

$$p \ll n^4 \log N \log \log N$$

and integer $t \neq 0$ such that all elements of $t \cdot A$ are distinct modulo p and are congruent to an integer in (-p/4, p/4) modulo p and p divides no non-zero element of A + A - A - A.

[Hint: Use the fact that every integer in $(A+A-A-A)\setminus\{0\}$ trivially has $O(\log N)$ many distinct prime divisors and consider $(t\cdot a)_{a\in A}$ modulo some suitable prime as t ranges over the interval $[1,4^n+1]$. You might also find useful that for all sufficiently large X there are at least $\frac{X}{2\log X}$ many primes in (X,2X].]

- (b) Hence deduce that every finite set $A \subset \mathbb{Z}$ is 2-isomorphic to some $A' \subset \{1, \dots, N\}$ where $N \leq C^{C^{|A|}}$ for some constant C > 1.
- 5. Let G be a finite abelian group of odd order and let $A \subset G$ be a set of density $\alpha = |A|/|G|$. For any $0 < \eta \le 1$ let

$$\Delta_{\eta}(A) = \{ \gamma \in \widehat{G} : |\widehat{1}_{A}(\gamma)| \ge \eta |A| \}.$$

(a) Show that there are $c_{\gamma} \in \mathbb{C}$ with $|c_{\gamma}| = 1$ such that for any $\Delta \subseteq \Delta_{\eta}(A)$ if

$$f(x) = \sum_{\gamma \in \Delta} c_{\gamma} \overline{\gamma(x)}$$

then for any $m \geq 1$

$$||f||_{2m} \ge \eta |A|^{1/2m} |\Delta|.$$

- (b) Use Rudin's inequality (Question 8(c) on Examples Sheet 3) to deduce the strong Chang's dimension inequality: that $\Delta_{\eta}(A)$ is contained in Span(Γ) for some multiset Γ of size $O(\eta^{-2} \log(2/\alpha))$. [Hint: Consider a maximal dissociated subset of $\Delta_{\eta}(A)$.]
- 6. This question demonstrates how Bogolyubov-Ruzsa results were obtained in the days before almost-periodicity.
 - (a) Show that if $E(A) \ge \delta |A|^3$ then, if

$$\Delta = \{ \gamma \in \widehat{G} : |\widehat{1_A}(\gamma)| \ge \frac{1}{2} \delta^{1/2} |A| \},$$

and B is the Bohr set with frequency set Δ and width 1/2 then $B \subset 2A - 2A$. [Hint: First note that if $x \in B$ then $\text{Re}(\gamma(x)) > 1/2$ for all $\gamma \in \Delta$. Then take real parts of the Fourier representation of $1_A * 1_A * 1_{-A} * 1_{-A}(x)$.]

- (b) Use part (a) with together with the strong Chang bound of Question 5 to deduce that if $A \subset \mathbb{Z}/N\mathbb{Z}$ with $|A| \geq N/K$ then 2A 2A contains a Bohr set with rank $O(K \log K)$ and width $1/K \log K$. Compare this to the Bogolyubov-Ruzsa lemma obtained in lectures.
- 7. Show that if $f:\{1,\ldots,N\}\to\mathbb{Z}$ has at least $K^{-1}N^3$ many $x,y,z,w\in\{1,\ldots,N\}$ such that

$$x + y = z + w$$
 and $f(x) + f(y) = f(z) + f(w)$

then there exists $a, b \in \mathbb{Q}$ such that

$$\#\{1 \le x \le N : f(x) = ax + b\} \gg_K N^c$$

where $c \gg_K 1$ is some constant depending only on K.

[Hint: Consider the graph $\Gamma = \{(x, f(x)) : 1 \le x \le N\} \subset \mathbb{Z}^2$ and use Question 3.]

- 8. (a) Let $K \ge 1$. Show that if $A \subset \mathbb{Z}$ has $|A + A| \le K |A|$ and |A| is sufficiently large depending on K then A contains a non-trivial three-term arithmetic progression.
 - (b) Explore what quantitative control you can get on how large is 'sufficiently large' using the bounds proved in lectures for Bourgain's theorem on three-term arithmetic progressions and the Freiman-Ruzsa-Sanders inverse theorem.