
ADDITIVE COMBINATORICS EXAMPLES SHEET 4: SOLUTIONS

ALED WALKER

These are the ‘official’ solutions for the fourth example sheet. This is not to say that they
cannot be improved, nor that there are no alternative approaches, nor that there won’t be
the occasional small oversights or omissions! Nevertheless, this document should hopefully
serve as a record of how to do all the questions, and be useful when it comes to your future
revision and study.

If you have any questions about any of these solutions, please drop me an email at
aw530@cam.ac.uk.

(1) Let

P = {a+ n1v1 + · · ·+ ndvd : 0 6 ni < Ni}
be a generalised aithmetic progression of rank d in Z. Let

Γ = {(m1, . . . ,md) ∈ Zd : m1v1 + · · ·+mdvd = 0 and |mi| < Ni}.
Recall that the volume of P is defined to be vol(P ) :=

∏
iNi. Show that

vol(P )

|P |
6 |Γ| 6 3d

vol(P )

|P |
.

Solution: For each p ∈ P , choose b(p) ∈ ([0, N1)× · · · × [0, Nd)) ∩ Zd with

a+ b
(p)
1 v1 + · · ·+ b

(p)
d vd = p.

Let B = {b(p) : p ∈ P}. Trivially we have |B| = |P |. But also |B+ Γ| = |B||Γ|, since
if b(p) + γ = b(q) + γ′, with γ, γ′ ∈ Γ, then b(p) − b(q) ∈ Γ− Γ and hence

(b
(p)
1 − b

(q)
1 )v1 + · · ·+ (b

(p)
1 − b

(q)
1 )vd = 0.

So

p = a+
∑
i6d

b
(p)
i vi = a+

∑
i6d

b
(q)
i vi = q,

and hence b(p) = b(q).
By construction we have B + Γ ⊂ (−N1, 2N1) × · · · × (−Nd, 2Nd), and hence
|B + Γ| 6 3d vol(P ). Furthermore B + Γ ⊃ [0, N1) × · · · × [0, Nd), since if n ∈
[0, N1)×· · ·× [0, Nd) we get a+n1v1 + · · ·+ndvd ∈ P . Let p := a+n1v1 + · · ·+ndvd.
Then n− b(p) ∈ Γ, and thus n ∈ b(p) + Γ ⊂ B + Γ. So

vol(P ) 6 |B + Γ| = |B||Γ| = |P ||Γ| 6 3d vol(P ),

which gives the desired inequalities.

(2) Let P be a proper generalised arithmetic progressions of rank d, and suppose X ⊂ P
has size |X| < ε|P |. Show that P \X contains a proper generalised arithmetic pro-
gressions Q of rank d with |Q| > ε−1C−d for some constant C.

Solution: The conclusion is trivial if ε > 8−d, so from now on we assume that
ε 6 8−d. Let N1, . . . , Nd > 2 be natural numbers and a, v1, . . . , vd ∈ G such that

P = {a+ n1v1 + · · ·+ ndvd : 0 6 ni < Ni for all i}.
1
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Split each interval [0, Ni) into disjoint subintervals I
(i)
ki

, ki 6 Ki, with the properties
that:
• Ki > ε1/dNi;

• |I(i)
ki
∩ Z| > ε−1/d/4 for each ki.

This is possible. Indeed, choose I
(i)
ki

to have length exactly Ni/dε1/dNie, giving

Ki = dε1/dNie. Then

|I(i)
ki
∩ Z| > Ni

dε1/dNie
− 2 >

1

2ε1/d
− 2 >

1

4ε1/d

since ε 6 8−d.
Then, for each (k1, . . . , kd) with ki 6 Ki for all i we have that

Pk1,...,kd := {a+ n1v1 + · · ·+ ndvd : ni ∈ I(i)
ki

for all i}

is a proper generalised arithmetic progression of rank d and size at least∏
i6d

|I(i)
ki
∩ Z| > (ε−1/d/4)d = ε−14−d.

Since there are at least ε
∏

i6dNi = ε|P | > |X| such GAPs Pk1,...,kd , by the pigeon-
hole principle there must be at least one such progression which is contained in P \X.

(3) (a) Show that for any s > 1 and d > 1 every finite subset of Zd is Freiman s-
isomorphic to a subset of Z.

(b) Hence deduce a Freiman–Ruzsa–Sanders inverse result of subsets of Zd with small
doubling.

Solution: Part(a). Let A ⊂ Zd be a finite set. Translation is a Freiman isomorphism
to all orders, so without loss of generality we may assume that A ⊂ Nd.

Writing a = (a1, . . . , ad) for each a ∈ A, define

K = max
a∈A
i6d

ai.

Let M = sK + 1. Then define the map f : A −→ Z by

f(n1, . . . , nd) =
∑
i6d

aiM
i,

i.e. use base M expansion.
This is a Freiman s-isomorphism. Indeed, if a(1) + · · ·+a(s) = b(1) + · · ·+ b(s) (with

a(j), b(j) ∈ A) then clearly f(a(1))+· · ·+f(a(s)) = f(b(1))+· · ·+f(b(s)), so the content
is the reverse implication. So, assuming f(a(1))+ · · ·+f(a(s)) = f(b(1))+ · · ·+f(b(s))
we have ∑

i6d

(∑
j6s

a
(j)
i −

∑
j6s

b
(j)
i

)
M i = 0.

Suppose for contradiction that there is some i for which∑
j6s

a
(j)
i −

∑
j6s

b
(j)
i 6= 0.



ADDITIVE COMBINATORICS EXAMPLES SHEET 4: SOLUTIONS 3

Let i be maximal such. Then

M i 6
∣∣∣∑
j6s

a
(j)
i −

∑
j6s

b
(j)
i

∣∣∣M i =
∣∣∣ ∑
k6i−1

(∑
j6s

a
(j)
k −

∑
j6s

b
(j)
k

)
Mk
∣∣∣ 6 ∑

k6i−1

(2Ks)Mk

= (2Ks)
M i − 1

M − 1

= M i − 1

< M i,

giving a contradiction. So no such i exists, and thus
∑

j6s a
(j) =

∑
j6s b

(j) as required.

For part (b), the statement is the following. Let K > 4. Given a set A ⊂ Zd with
|A+A| 6 K|A| there exists a proper generalised arithmetic progression P ⊂ Zd with

A ⊂ P , such that rank P is at most K(logK)O(1) and |P | � 2−K(logK)O(1)|A|. For
the proof, the cleanest way is probably to let A′ ⊂ Z be Freiman 16-isomorphic to
A. Then |A′ + A′| 6 K|A′|, and so from the Bogolyubov–Ruzsa style lemma from
lectures we know that 4A′ − 4A′ contains a proper GAP P of rank (logK)O(1) and
size exp(−(logK)O(1))|A′|. Since f−1

16 extends to a 2-isomorphism on 4A′ − 4A′, and
2-isomorphisms preserve proper GAPs, we have that 4A−4A contains a GAP f−1

16 (P )
with the same rank and size. Then finish as in the lectured proof of Freiman–Ruzsa
for subsets of Z.

(4) (a) Suppose that A ⊂ {1, . . . , N} is such that |A| = n 6 1
2

log logN . Show that, if
n is sufficiently large, then there exists a prime p with

p� n4 logN log logN

and an integer t 6= 0 such that 0 /∈ t ·((2A−2A)\{0}) mod p and all the elements
of t · A are congruent to an integer in (−p/4, p/4) modulo p.

(b) Hence deduce that every finite setA ⊂ Z is 2-isomorphic to someA′ ⊂ {1, . . . , N ′}
where N ′ 6 CC|A|

for some constant C > 1.

NB: this is not exactly the version that is stated on the examples sheet, at least
in the version that was available at the time of writing these solutions.

Solution: We call a prime p bad if there is some x ∈ (2A − 2A) \ {0} with p|x
(otherwise we say that p is good). Since such an x satisfies |x| 6 2N , there are at
most log(2N)/ log 2 bad primes dividing such an x. Indeed, if |x| =

∏
p p

vp(x) then

|{p : vp(x) > 1}| 6
∑
p

vp(x) =
log(2

∑
p vp(x))

log 2
6

1

log 2
log
(∏

p

pvp(x)
)

=
log |x|
log 2

6
log(2N)

log 2
.

Taking the union bound over all x ∈ (2A − 2A) \ {0}, the number of bad primes is
at most (log 2)−1n4 log(2N)

Now let L be a large constant. If n is large enough then the number of primes
between Ln4 logN log logN and 2Ln4 logN log logN is at least

Ln4 logN log logN

2 log(2Ln4 logN log logN)
,

which is � Ln4 logN as n 6 1
2

log logN . So, if L is large enough, there must be
some good prime p in the range

Ln4 logN log logN < p 6 2Ln4 logN log logN.
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Fix such a p. Now break up the range (−p/2, p/2) into four intervals each of length
at most p/4, namely

I1 = (−p/2,−p/4), I2 = [−p/4, 0), I3 = [0, p/4), and I4 = [p/4, p/2).

Thus break up (Z/pZ)n into 4n boxes Ii1,...,in := Ii1 × · · · × Iin . Writing A =
{a1, . . . , an}, for each t ∈ Z we consider

t̃ · A := (ta1, . . . , tan) mod p ∈ (Z/pZ)n.

Now let t range over the sequence 1, 2, . . . , 4n + 1. By the pigeonhole principle, there
is some box Ii1,...,in and two distinct t1, t2 6 4n + 1 for which

t̃1 · A, t̃2 · A ∈ Ii1,...,in .
Then, for each a ∈ A, we have that (t1 − t2)a is congruent to an integer b modulo p
which satisfies |b| < p/4 (the inequality is strict since there is no interval Ii both of
whose endpoints are integers).

Let t = t1 − t2. Then

|t| 6 4n 6 4
1
2

log logN = (logN)log 2 < p,

since log 2 < 1. So p does not divide t either, and hence 0 /∈ t · t((2A − 2A) \ {0})
mod p as required.

For part (b), we argue as follows. Without loss of generality we may assume that
n = |A| is large. Now pick a large constant C and suppose that N ′ is minimal
such that there exists some A′ ⊂ {1, . . . , N ′} with A being 2-isomorphic to A′. If
N ′ 6 CCn we are done, so suppose otherwise. Then |A| 6 1

2
log logN ′ (if C is large

enough), so we can apply part (a). Let B ⊂ (−p/4, p/4) be the set t·A mod p, viewed
as a subset of Z. We claim that B is 2-isomorphic to A. Indeed, if a1 + a2 = a3 + a4

then b1 + b2 = b3 + b4 mod p, just by projection. But since

−p < b1 + b2 − b3 − b4 < p,

we have b1 + b2 = b3 + b4 in Z. For the reverse implication, if b1 + b2 = b3 + b4 then
ta1 + ta2 = ta3 + ta4 mod p, i.e. p divides t(a1 + a2 − a3 − a4). But since p is good
this means that a1 + a2 − a3 − a4 = 0.

Translating B, we find a 2-isomorphic image of A within [1, p/2 + 1]. This is a
contradiction to the minimality of N ′ unless p/2 + 1 > N ′, so we have

(log logN ′)5 logN ′ > n4 logN ′ log logN ′ � N ′.

So N ′ = O(1), and we are done.

There is a way of using Minkowski’s first theorem to improve the bound in part
(b) from CCn to just a single exponential Cn. See

https://mathoverflow.net/questions/225773/freiman-isomorphic-sets

for more.

(5) Let G be a finite abelian group of odd order and let A ⊂ G be a set of density
α = |A|/|G|. For any 0 < η 6 1 let

∆η(A) = {γ ∈ Ĝ : |1̂A(γ)| > η|A|}.
(a) Show that there are cγ ∈ C with |cγ| = 1 such that for any ∆ ⊂ ∆η(A) if

f(x) =
∑
γ∈∆

cγγ(x)
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then for any m > 1

‖f‖2m > η|A|1/2m|∆|.

(b) Use Rudin’s inequality (Question 8(c) on Examples Sheet 3) to deduce the strong
Chang’s dimension inequality: that ∆η(A) is contained in span(Γ) for some mul-
tiset Γ of size O(η−2 log(2/α)).

Solution: Let cγ ∈ C with |cγ| = 1 be defined to satisfy the relation

cγ 1̂A(γ) = |1̂A(γ)|.

Then on the one hand∣∣∣∑
x

1A(x)f(x)
∣∣∣ =

∣∣∣∑
x

1A(x)
∑
γ∈∆

cγγ(x)
∣∣∣ =

∣∣∣∑
γ∈∆

1̂A(γ)cγ

∣∣∣ =
∑
γ∈∆

|1̂A(γ)| > η|∆||A|.

On the other hand, by Hölder∣∣∣∑
x

1A(x)f(x)
∣∣∣ 6 |A|1− 1

2m‖f‖2m.

Hence ‖f‖2m > η|A|1/2m|∆| as claimed.
For the second part, let ∆ ⊂ ∆η(A) be a maximal dissociated subset. We apply

Rudin’s inequality to the function g : Ĝ −→ C defined by

g(γ) =

{
cγ if γ ∈ ∆

0 otherwise.

We have to swap the roles of G and Ĝ, which will affect our normalisations. Now
f = ĝ, and from Rudin’s inequality we get

N−1/2m‖f‖2m � m1/2‖g‖2 = m1/2|∆|1/2.

Concatenating with the lower bound on ‖f‖2m and rearranging, we get

|∆| � mη−2|A|−1/mN1/m = mη−2α−1/m.

Now choose m � log(2/α). This yields |∆| � η−2 log(2/α).
Now consider the multiset ∆′ := ∆∪−∆∪(2·∆)∪(−2·∆) (where if an element ap-

pears in k of these four sets we count it k times in ∆′). We have |∆′| � η−2 log(2/α).
Furthermore, ∆η(A) ⊂ span(∆′), since if γ ∈ ∆η(A) \ span(∆′) then ∆ ∪ {γ} is dis-
sociated, contradicting maximality of ∆.

(6) This question demonstrates how Bogolyubov–Ruzsa results were obtained in the days
before almost-periodicity.
(a) Show that if E(A) > δ|A|3 then, if

∆ = {γ ∈ Ĝ : |1̂A(γ)| > 1

2
δ1/2|A|},

and B is the Bohr set with frequency set ∆ and width 1/2, then B ⊂ 2A− 2A.
(b) Use part (a), together with the strong Chang bound of Question 5, to deduce

that if A ⊂ Z/NZ wit |A| > N/K then 2A − 2A contains a Bohr set with
rank O(K logK) and width 1/K logK. Compare this to the Bogolyubov–Ruzsa
lemma obtained in lectures.
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Solution: We know that (1A ∗ 1A) ◦ (1A ∗ 1A)(x) > 0 if and only if x ∈ 2A − 2A,
and also that

(1A ∗ 1A) ◦ (1A ∗ 1A)(x) = E
γ
|1̂A(γ)|4γ(x).

Finally, E(A) = Eγ |1̂A(γ)|4.
Now let x ∈ Bohr(∆, 1/2). We have∣∣∣E

γ
|1̂A(γ)|4γ(x)− E(A)

∣∣∣ 6 E
γ
|1̂A(γ)|4|γ(x)− 1|

6
1

2N

∑
γ∈∆

|1̂A(γ)|4 +
2

N

∑
γ /∈∆

|1̂A(γ)|4

<
1

2
E(A) +

1

2N
δ|A|2

∑
γ

|1̂A(γ)|2

6
1

2
E(A) +

1

2
δ|A|3

6 E(A)

by the assumption E(A) > δ|A|3 and by Parseval. Therefore (1A ∗ 1A) ◦ (1A ∗ 1A) =

Eγ |1̂A(γ)|4γ(x) > 0, so x ∈ 2A− 2A as required.
For part (b), since |A| > N/K we know that |A + A| 6 K|A|, and hence that

E(A) > K−1|A|3. Now apply part (a) with δ = K−1. This shows that, with ∆ as in
that part, Bohr(∆, 1/2) ⊂ 2A−2A. Now, let ∆′ be a maximal dissociated subset of ∆
and let x ∈ Bohr(∆′, cK−1(logK)−1), for a suitably small constant c > 0. If γ ∈ ∆,
we have γ ∈ span(∆′) and hence γ =

∏
γ′∈∆′(γ′)εγ′ , for some εγ′ ∈ {−1, 0,+1}.

Hence

|γ(x)− 1| =
∣∣∣ ∏
γ′∈∆′

(γ′)εγ′ (x)− 1
∣∣∣ 6 |∆′|max

γ′∈∆′
|γ′(x)− 1| 6 c|∆′|K−1(logK)−1,

where we used the telescoping identity

z1z2 . . . zd−w1w2 . . . wd = (z1−w1)w2 . . . wd+z1(z2−w2)w3 . . . wd+· · ·+z1z2 . . . zd−1(zd−wd).

We know further that |∆′| � (δ1/2)−2 log(2/α) � K logK. So, if c is small enough
we get |γ(x)− 1| 6 1/2, and so x ∈ Bohr(∆, 1/2).

Putting everything together we conclude that

Bohr(∆′, cK−1(logK)−1) ⊂ Bohr(∆, 1/2) ⊂ 2A− 2A,

giving the Bohr set as required.
In lectures we used almost-periodicity to find a Bohr set in 4A − 4A with much

smaller rank, namely (logK)O(1), even if the width K−2 was somewhat smaller than
the width we found in this exercise. In fact, in Sanders original work, he finds such
a Bohr set in 2A− 2A.

(7) Show that if f : {1, . . . , N} −→ Z has at least K−1N3 many x, y, z, w ∈ {1, . . . , N}
such that

x+ y = z + w and f(x) + f(y) = f(z) + f(w)

then there exists a, b ∈ Q such that

|{1 6 x 6 N : f(x) = ax+ b} �K N c,

where c�K 1 is some constant depending only on K.
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Solution: We may assume that N is large enough depending on K, else the conclu-
sion is trivial. Now let

A = {(x, f(x)) : x ∈ {1, . . . , N}} ⊂ Z2.

Then |A| = N , and the hypotheses of the exercise give E(A) > K−1N3. So, by
Balog–Szemeredi–Gowers there is a set A′ ⊂ A with |A′ + A′| 6 KO(1)|A′| and
|A′| > K−O(1)N . By Freiman’s theorem, there is a proper GAP P of size |P | �K |A|
and rank d = OK(1), with A′ ⊂ P .

If M1, . . . ,Md are the sizes of the different coordinate directions in the definition
of P , with |P | = M1M2 · · ·Md, there is some Mi > |P |1/d �K N1/d. Using this
direction, we may decompose P as the disjoint union of one-dimensional arithmetic
progressions, each with length �K N1/d. Explicitly, we get progressions Q of the
form

Q = {a+
∑
j6d
j 6=i

njvj + nivi : 0 6 ni < Mi}

for each fixed tuple nj ∈ [0,Mj) for those j 6= i.
By an averaging argument, there must be at least one such progression Q for which

|A′ ∩Q| �K |Q|. Suppose that

Q = {(h1, h2) + `(g1, g2) : 0 6 ` < L},

where L = |Q| �K N1/d. So for each (x, f(x)) ∈ A′ ∩Q we have

x = h1 + `g1, and f(x) = h2 + `g2.

Hence

f(x) =
g2

g1

x+
g1h2 − g2h1

g1

,

provided g1 6= 0. However if g1 = 0 then the first coordinate of all elements in A′∩Q
must be equal to h1, and hence |A′ ∩Q| 6 1 as A′ is the graph of a function. Since
|Q| > 1 (since N is large enough), this case doesn’t occur.

Hence there are rational numbers a = g2/g1 and b = (g1h2 − g2h1)/g1 with
f(x) = ax+ b for a set of x of size at least �K N1/d, as required.

(8) (a) Let K > 4. Show that if A ⊂ Z has |A+A| 6 K|A| and |A| is sufficiently large
depending on K then A contains a non-trivial three-term arithmetic progression.

(b) Explore what quantitative control you can get on how large is ‘sufficiently large’
using the bounds proved in lectures for Bourgain’s theorem on three-term arith-
metic progressions and the Freiman–Ruzsa–Sanders inverse theorem.

Solution: There is a moral to the story here, which is, “Learn methods, not just
theorems.” This is because a direction application of Ruzsa modelling does much
better than a simple argument using Freiman’s theorem (or even a less simple argu-
ment using Freiman’s theorem).

If |A + A| 6 K|A| then we know there is a proper GAP P with rank d =

O(K(logK)O(1)) and size |P | � 2−K(logK)O(1)|A| such that A ⊂ P . Decomposing P
as a disjoint union of rank 1 progressions Qi each with size |Qi| > |P |1/d, as in our so-

lution to Q7, we have some such rank 1 progressionQ with |A∩Q| � 2−K(logK)O(1)|Q|.
By Bourgain’s theorem on three-term arithmetic progressions, A∩Q contains a non-
trivial three term AP provided 2K(logK)O(1)

6 c(log |Q|)1/2−δ for some fixed δ > 0 and
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small absolute constant c > 0. It is therefore sufficient to have

2K(logK)O(1)

6 c(d−1 log |A|)1/2−δ.

Rearranging and using d = O(K(logK)O(1)), it suffices to have

|A| > exp(exp(O(K(logK)O(1)))).

Here’s an immediate improvement, using the following version of Freiman’s theo-
rem that follows quickly from the Bogolyubov–Ruzsa lemma but which I don’t think
was stated in the printed lecture notes:

Theorem 1. Let K > 4. Suppose A ⊂ Z with |A + A| 6 K|A|. Then there exists
a proper GAP P with rank � (logK)O(1) such that |P ∩A| � exp(−(logK)O(1))|A|
and |P | � KO(1)|A|.

Note that by passing to a large subset of A we can dramatically improve the rank
bound from the version of Freiman’s theorem you had in lectures.

Proof. We know from Bogolyubov–Ruzsa that there is a GAP P ⊂ 4A − 4A with
rank � (logK)O(1) and size � exp(−(logK)O(1))|A| such that P − P is a proper
GAP. Now let S ⊂ A be maximal such that (S − S) ∩ (P − P ) = {0}. Then
|P ||S| = |P + S| 6 |5A − 4A| 6 K9|A|, and hence |S| 6 exp((logK)O(1)). The
translates P − P + s cover A. Otherwise, there would be some a ∈ A for which
a /∈ P−P+S, and this implies, defining S ′ := S∪{a}, that (P−P )∩(S ′−S ′) = {0},
contradicting the maximality of S. Now choose s ∈ S such that |A∩ (P −P + s)| is
maximised. We must have

|A ∩ (P − P + s)| > |A|
|S|
� exp(−(logK)O(1))|A|.

This finishes the theorem, taking the GAP P − P + s. �

Now we use Theorem 1 to find non-trivial 3APs in A. Indeed, let A′ = A ∩ P .
Applying the same argument as above, but to A′ instead, A′ has a non-trivial 3AP
provided

exp((logK)O(1)) 6 c(d−1 log |A′|)1/2−δ.

Rearranging and using the improved bound d = O((logK)O(1)), it suffices to have

|A′| > exp(exp((logK)O(1))),

so it suffices to have

|A| > exp(exp((logK)O(1))).

But both of these bounds are blown out of the water by a direct application
of Ruzsa modelling. Indeed, by Ruzsa modelling we know that there is a subset
A′ ⊂ A with |A′| > 1

2
|A| such that A′ is 2-isomorphic to a set B ⊂ Z/NZ with

|B| > N/(4K4). Now B contains a non-trivial 3AP provided

4K4 6 c(logN)1/2−δ

for some small constant c. So it suffices to have

4K4 6 c(log |B|)1/2−δ,

which rearranging gives |B| > exp(KO(1)). Since 2-isomorphisms preserve 3APs,

|A| > exp(KO(1))

suffices to find 3APs in A.


