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CHAPTER 1

Elementary Techniques

Review of asymptotic notation. We write f(x) = O(g(x)) if there exists some
constant C > 0 such that |f(x)| ≤ C |g(x)| for all sufficiently large x. We will also
use the Vinogradov notation f � g to denote the same thing (so that f = O(g)
and f � g are equivalent). Occasionally we will use subscript notation to denote
dependence of the constants. For example, f �δ g means there exists some constant
C(δ) depending on δ such that |f(x)| ≤ C(δ) |g(x)| for all sufficiently large x (where
sufficiently large may also depend on δ).

We write f(x) = o(g(x)) if limx→∞
f(x)
g(x) = 0 and f ∼ g if limx→∞

f(x)
g(x) = 1.

Observe that

f ∼ g if and only if f = (1 + o(1))g.

We will also write f � g to mean f � g � f .

1. Arithmetic functions

An arithmetic function is simply a function on the natural numbers1, f : N→ R.
An arithmetic function is multiplicative if

f(nm) = f(n)f(m) whenever (n,m) = 1,

and is completely multiplicative if f(nm) = f(n)f(m) for all n,m ∈ N. Some
important examples of multiplicative functions are

(1) the constant function 1(n) = 1 for all n,
(2) the delta function

δ(n) =

{
1 if n = 1 and

0 otherwise,

and
(3) the Möbius function

µ(n) =

{
(−1)k if n = p1 · · · pk with pi 6= pj and

0 if some p2 | n.

Note that every multiplicative function satisfies f(1) = 1.
An important operation on the space of arithmetic functions is that of multi-

plicative convolution:

f ? g(n) =
∑
ab=n

f(a)g(b).

If f and g are both multiplicative functions, then so too is f ?g. We list some basic
facts about this operation:

1For the purposes of this course, 0 is not a natural number.
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(1) it is commutative,
(2) it is associative,
(3) δ acts as identity, so that δ ? f = f ,
(4) if f and g are both multiplicative then so is f ? g, and
(5) (Möbius inversion) the Möbius function acts as an inverse, in that

µ ? f = g if and only if 1 ? g = f.

All facts are easy to verify, and we will prove only the last. It suffices to show that
1 ? µ = δ, that is, for every n,

∑
d|n

µ(d) =

{
1 if n = 1 and

0 otherwise.

Since both sides are multiplicative functions (the left-hand side by fact (4) above)
it suffices to check this identity when n is a power of a prime, say pk. If k = 0 then
the left-hand side is just µ(1) = 1, and if k ≥ 1, the left-hand side is

µ(1) + µ(p) + · · ·+ µ(pk) = µ(1) + µ(p) = 1 + (−1) = 0.

A great deal of analytic number theory is concerned with the distribution of the
prime numbers. The ‘correct’ way to count primes is not, as one might expect, the
indicator function

1P(n) =

{
1 if n is prime and

0 otherwise,

but instead the von Mangoldt function, which firstly also counts prime powers
pk, but also counts them not with weight 1, but with weight log p instead:

Λ(n) =

{
log p if n = pk and

0 otherwise.

The main reason that this function is much easier to work with than 1P directly, is
the following identity.

Lemma 1.

1 ? Λ(n) = log n and log ?µ(n) = Λ(n).

Proof. The second identity follows from the first by Möbius inversion. To establish
the first, if we let n = pk11 · · · pkrr , then

1 ? Λ(n) =

r∑
i=1

ki∑
j=1

log pi

=

r∑
i=1

log pkii

= log n.

�
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2. Summation

A major theme of analytic number theory is understanding the basic arithmetic
functions, particularly how large they are on average, which means understand-
ing

∑
n≤x f(n). For example, if f is the indicator function of primes, then this

summatory function is precisely the prime counting function π(n).
One of the most useful tools in dealing with summations is partial summation,

which is a discrete analogue of integrating by parts.

Theorem 1 (Partial summation). If an is any sequence of complex numbers and
f : R+ → R is such that f ′ is continuous2 then∑

1≤n≤x

anf(n) = A(x)f(x)−
∫ x

1

A(t)f ′(t) dt,

where A(x) =
∑

1≤n≤x an.

Proof. Let N = bxc. Using an = A(n)−A(n− 1)

∑
1≤n≤x

anf(n) =

N∑
n=1

f(n)(A(n)−A(n− 1))

= f(N)A(N)−
N−1∑
n=1

A(n)(f(n+ 1)− f(n)).

We now observe that ∫ n+1

n

f ′(x) dx = f(n+ 1)− f(n),

and so, since A(x) is constant for x ∈ [n, n+ 1),

∑
1≤n≤N

anf(n) = f(N)A(N)−
N−1∑
n=1

∫ n+1

n

A(x)f ′(x) dx,

and the result follows since if N ≤ x < N + 1 then

A(x)f(x) = A(N)f(x) = A(N)f(N) +

∫ x

N

A(x)f ′(x) dx.

�

This is useful even when the coefficients an are identically 1, when A(x) = bxc =
x+O(1).

Lemma 2. ∑
n≤x

1

n
= log x+ γ +O(1/x),

where γ = 0.577 · · · is a constant, known as Euler’s constant.

2This condition can be relaxed, but will be sufficient for our purposes. Partial summation can
be generalised to a far-reaching theory of integration, known as Riemann-Stieltjes integration. For

details see Appendix A of Montgomery and Vaughan.
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Proof. By partial summation∑
n≤x

1

n
=
bxc
x

+

∫ x

1

btc
t2

dt

= 1 +

∫ x

1

1

t
dt−

∫ ∞
1

{t}
t2

dt+

∫ ∞
x

{t}
t2

dt+O(1/x)

= log x+

(
1−

∫ ∞
1

{t}
t2

dt

)
+O(1/x).

It remains to note that the second term is a constant, since the integral converges.
�

It is remarkable how little we understand about Euler’s constant – it is not even
known whether it is irrational or not.

Lemma 3. ∑
1≤n≤x

log n = x log x− x+O(log x).

Proof. By partial summation∑
n≤x

log n = bxc log x−
∫ x

1

btc
t

dt

= x log x− x+O(log x).

�

We now give an application to a more number-theoretic function, the divisor
function3

τ(n) = 1 ? 1(n) =
∑
ab=n

1 =
∑
d|n

1.

Lemma 4. ∑
n≤x

τ(n) = x log x+O(x).

More precisely, ∑
n≤x

τ(n) = x log x+ (2γ − 1)x+O(x1/2).

In particular,
∑
n≤x τ(n) ∼

∑
n≤x log n, so τ(n) is ‘on average’ roughly log n.

Proof. The proof of the first is a simple change in the order of summation:∑
n≤x

τ(n) =
∑
ab≤x

1

=
∑
a≤x

⌊x
a

⌋
= x

∑
a≤x

1

a
+O(x)

= x log x+O(x),

where we used Lemma 2 as
∑
a≤x

1
a = log x+ γ +O(1/x) = log x+O(1).

3Alternative notation used in some places is d(n) or σ0(n).
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To improve the error term we use what is known as the hyperbola method, which
is the observation that when summing over pairs (a, b) such that ab ≤ x we can
express this as the sum over pairs where a ≤ x1/2 and where b ≤ x1/2, and then
subtract the contribution where max(a, b) ≤ x1/2.∑

ab≤x

1 =
∑

a≤x1/2

⌊x
a

⌋
+
∑

b≤x1/2

⌊x
b

⌋
−

∑
a,b≤x1/2

1

= 2x
∑

a≤x1/2

1

a
− bx1/2c2 +O(x1/2)

= x log x+ (2γ − 1)x+O(x1/2).

�

It is a deep and difficult problem to improve the error term here – the truth is
probably O(x1/4+ε), but this is an open problem, and the best known is O(x0.3149···).

3. Estimates on prime numbers

The prime number theorem is the statement that

π(x) ∼ x

log x
,

or, equivalently (we will justify this equivalence soon),

ψ(x) =
∑
n≤x

Λ(n) ∼ x.

The proof of this is surprisingly involved, and we will return to it later in the course
when we examine the Riemann zeta function. It is much easier to show, if not an
asymptotic formula, at least that this is the correct rate of growth of the function.
This was proved in 1850 by Chebyshev.

Theorem 2 (Chebyshev).

ψ(x) � x.

Proof. We will first prove the lower bound. This relies on the observation that, for
any y ≥ 0, b2yc ≤ 2byc+ 1, and hence 1 ≥ b2yc− 2byc, where we have the freedom
to choose y. We exploit this as follows:

ψ(x) =
∑
n≤x

Λ(n)

≥
∑
n≤x

Λ(n)
(⌊x
n

⌋
− 2

⌊ x
2n

⌋)
=
∑
nm≤x

Λ(n)− 2
∑

nm≤x/2

Λ(n)

=
∑
n≤x

log n− 2
∑
n≤x/2

log n.

Here we have used Lemma 1, that 1 ? Λ(n) = log(n). By Lemma 3,

ψ(x) ≥ x log x−x+O(log x)−2
(x

2
log(x/2)− x

2
+O(log x)

)
= (log 2)x+O(log x).
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It follows that, for any c > 0 and x sufficiently large, ψ(x) ≥ (log 2−c)x, and hence
ψ(x)� x.

For the upper bound, we do something very similar, except we note that for
y ∈ [1/2, 1) we have equality b2yc = 2byc+ 1. Furthermore, for any y ≥ 0, we have
the lower bound b2yc ≥ 2byc. It follows that∑

x/2<n≤x

Λ(n) =
∑

x/2<n≤x

Λ(n)
(⌊x
n

⌋
− 2

⌊ x
2n

⌋)
≤
∑
n≤x

Λ(n)
(⌊x
n

⌋
− 2

⌊ x
2n

⌋)
= (log 2)x+O(log x)

by the above calculation. The left hand side is ψ(x) − ψ(x/2), and so we have
shown that

ψ(x)− ψ(x/2) ≤ (log 2)x+O(log x).

Using the fact that ψ(x) = 0 for any x ≤ 1,

ψ(x) =

dlog2 xe∑
k=0

(ψ(x/2k)− ψ(x/2k+1)) ≤ (2 log 2)x+O((log x)2),

and hence ψ(x)� x as required. �

Chebyshev’s estimate is the first non-trivial quantitative information we have
about the primes, and leads to a host of other facts about the primes – rather
surprisingly, not just big-oh behaviour, but precise asymptotic results.

Lemma 5.

π(x) =
ψ(x)

log x
+O

(
x

(log x)2

)
.

In particular, π(x) � x/ log x, and π(x) ∼ x/ log x if and only if ψ(x) ∼ x.

Proof. We first remove the contribution from prime powers by noting that, if θ(x) =∑
p≤x log p, then using ψ(x)� x,

ψ(x)− θ(x) =
∑
k≥2

∑
p≤x1/k

log p�
dlog xe∑
k=2

ψ(x1/k)� x1/2.

It follows that θ(x) = ψ(x) + O(x1/2). In particular, by Chebyshev’s estimate, we
have θ(x) � x. We apply partial summation with an = Λ(n) if n is prime, and 0
otherwise, and f(n) = 1

logn . This gives

π(x) =
∑
p≤x

1 =
θ(x)

log x
+

∫ x

2

θ(t)

t(log t)2
dt =

θ(x)

log x
+O

(
x

(log x)2

)
.

The lemma follows, using θ(t) = O(t) to bound the contribution from the integral
here. �

Lemma 6. ∑
p≤x

log p

p
= log x+O(1).
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Proof. Recalling that log = 1 ? Λ, and using Lemma 3,

x log x+O(x) =
∑
n≤x

log n

=
∑
ab≤x

Λ(b)

= x
∑
b≤x

Λ(b)

b
+O(ψ(x)).

Dividing by x and using Chebyshev’s estimate, this proves that∑
n≤x

Λ(n)

n
= log x+O(1).

It remains to deal with the contribution from prime powers pk ≤ x for k ≥ 2, which
we bound trivially by∑

p≤x1/2

log p
∑
k≥2

1

pk
=

∑
p≤x1/2

log p
1

p2 − p
� 1.

�

Lemma 7. ∑
p≤x

1

p
= log log x+ b+O(1/ log x),

where b is some constant.

Proof. Let A(x) =
∑
p≤x(log p)/p = log x + R(x), say, where R(x) = O(1). By

partial summation∑
p≤x

1

p
=
A(x)

log x
+

∫ x

2

A(t)

t(log t)2
dt

= 1 +O(1/ log x) +

∫ x

2

1

t log t
dt+

∫ x

2

R(t)

t(log t)2
dt

= log log x+ 1− log log 2 +

∫ ∞
2

R(t)

t(log t)2
dt+O(1/ log x).

The integral here converges to some constant since R(t) = O(1), and the proof is
complete. �

Lemma 8. ∏
p≤x

(
1− 1

p

)−1

= c log x+O(1)

where c > 0 is some constant.
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Proof. We use log(1− t) = −
∑∞
k=1

tk

k to deduce that

log

∏
p≤x

(
1− 1

p

)−1
 = −

∑
p≤x

log(1− 1/p)

=

∞∑
k=1

∑
p≤x

1

kpk

=
∑
p≤x

1

p
+
∑
k≥2

∑
p≤x

1

kpk

=
∑
p≤x

1

p
+
∑
p

∑
k≥2

1

kpk
+O

∑
p>x

∑
k≥2

1

pk

 .

Note that the infinite sum over p converges to some constant. Furthermore, the
error term is

�
∑
p>x

1

p2
�
∑
n>x

1

n2
� 1

x
.

It follows from Lemma 7 that

log

∏
p≤x

(
1− 1

p

)−1
 = log log x+ b′ +O(1/ log x)

for some constant b′. The result follows taking the exponential of both sides, where
we use the fact that ex = 1 + O(x) for |x| ≤ 1 to replace eO(1/ log x) by 1 +
O(1/ log x). �

It is a little tricky to determine what the constant c in Lemma 8 actually is –
it turns out to be eγ ≈ 1.78 · · · . We can use this fact to point out why the naive
probabilistic heuristic can be misleading (and hopefully give some idea why the
prime number theorem itself, unlike these simple asymptotics, is hard to prove).

As a heuristic, we might guess that the probability that a given prime number p
divides a randomly chosen n is 1/p. Furthermore, we expect that these probabilities
should be independent for distinct primes p. Using the fact that n ≥ 3 is prime if
and only if p - n for all 2 ≤ p ≤ n1/2, we might guess that

1n is prime ≈ P(p - n for all 2 ≤ p ≤ n1/2) ≈
∏

p≤n1/2

(
1− 1

p

)
≈ 2e−γ/ log n.

This would in turn suggest that

π(x) =
∑
n≤x

1n is prime ≈ 2e−γ
∑
n≤x

1

log n
≈ 2e−γ

x

log x
.

But since 2e−γ = 1.12 · · · , this contradicts the prime number theorem! This shows
that, while heuristically thinking about discrete concepts in terms of ‘probability’
can lead to roughly the right order of magnitude, one must take care not to take
the constants obtained too seriously! (Essentially what’s going wrong here is that
divisibility by primes is not independent, especially for large primes – if I know that
p1p2 | n where both p1 and p2 are primes ≈ n1/3 then it’s impossible that q | n for
any prime q ≈ n1/2, for example.)
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Indeed, we can use the elementary estimates already obtained to show, not the

prime number theorem itself, but at least the fact that if π(x) log x
x converges to a

limit at all, then this limit must be 1, and hence the prime number theorem is true.
The hard part is showing that the limit exists.

Theorem 3 (Chebyshev). If π(x) ∼ c x
log x then c = 1.

Proof. By partial summation,∑
p≤x

1

p
=
π(x)

x
+

∫ x

1

π(t)

t2
dt.

The first term is trivially O(1). If π(x) ∼ c x
log x , then for any ε > 0, for x sufficiently

large, π(x) ≥ (c− ε) x
log x . It follows that∑

p≤x

1

p
≥ (c− ε)

∫ x

1

1

t log t
dt+O(1) = (c− ε) log log x+O(1).

By Lemma 7 the left hand side is (1 + o(1)) log log x, and hence, since ε > 0 is
arbitrary, c ≤ 1. Using the upper bound π(x) ≤ (c + ε) x

log x we may similarly

deduce that c ≥ 1, and hence c = 1. �



CHAPTER 2

Dirichlet series and the Riemann zeta function

We will now begin to harness the power of complex analysis for number theory.
The main object of study will the Riemann zeta function. Before we explore the
applications to number theory, we will spend some time proving various essential
facts about this function.

In the rest of the course, we will use (as is traditional for this topic) the letter s
to denote a complex variable, and σ and t to denote its real and imaginary parts
respectively, so that s = σ + it. Before we begin, it’s worth pausing to explicitly
point out what we mean by ns, where n is a natural number and s ∈ C. By
definition this is

ns = es logn = nσeit logn.

It is easy to check the multiplicative property, that (nm)s = nsms.
A Dirichlet series is an infinite series of the form

F (s) =

∞∑
n=1

an
ns
,

for some coefficients an ∈ C. If we denote the coefficients an by an arithmetic
function f(n) then we may write Ff (s) to denote this dependence.

Lemma 9. For any sequence an there is an abscissa of convergence σc such that
F (s) converges for all s with σ > σc and for no s with σ < σc. If σ > σc then there
is a neighbourhood of s in which F (s) converges uniformly. In particular, F (s) is
holomorphic at s.

Proof. It suffices to show that if F (s) converges at s0 and we take some s with
σ > σ0 then F converges uniformly in some neighbourhood of s. The lemma then
follows by taking σc = inf{σ : F (s) converges}.

Suppose that F (s) converges at s = s0. If we let R(u) =
∑
n>u ann

−s0 then by
partial summation, for any s,∑

M<n≤N

ann
−s = R(M)Ms0−s −R(N)Ns0−s + (s0 − s)

∫ N

M

R(u)us0−s−1 du.

If |R(u)| ≤ ε for all u ≥M , and if σ > σ0, then it follows that∣∣∣∣∣∣
∑

M<n≤N

ann
−s

∣∣∣∣∣∣ ≤ 2ε+ ε |s− s0|
∫ ∞
M

uσ0−σ−1 du ≤
(

2 +
|s− s0|
σ − σ0

)
ε.

There is some neighbourhood of s in which |s− s0| � σ−σ0, and hence by Cauchy’s
principle the series converges uniformly in this neighbourhood of s. �

Lemma 10. If
∑
ann

−s =
∑
bnn
−s for all s in some half-plane σ > σ0 (where

both series converge) then an = bn for all n.
11
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Proof. It suffices to show that if
∑
cnn
−s = 0 for all s with σ > σ0 then cn = 0 for

all n. Suppose that cn = 0 for all n < N . We can write

cN = −
∑
n>N

cn(n/N)−σ.

Since the sum here is convergent, the summands tend to 0, and hence cn � nσ for
any σ > σ0. It follows that that this sum is absolutely convergent for σ > σ0 + 1.
Since each term tends to 0 as σ →∞, and the series is absolutely convergent, the
right-hand side tends to 0, and hence cN = 0. �

Lemma 11. If Ff (s) and Fg(s) are two Dirichlet series, both absolutely convergent
at s, then

∞∑
n=1

f ? g(n)n−s

is absolutely convergent and equals Ff (s)Fg(s).

Proof. We simply multiply out the product of two series,(∑
n

an
ns

)(∑
m

bm
ms

)
=
∑
n,m

anbm
(nm)s

=
∑
k

( ∑
nm=k

anbm

)
k−s,

which is justified since both series are absolutely convergent. �

We now define the Riemann zeta function in the half-plane σ > 1 by

ζ(s) =
∑
n

1

ns
.

Observe that this series diverges at s = 1, and the series actually converges ab-
solutely for σ > 1. By the above, ζ(s) defines a holomorphic function in this
half-plane. For our applications, we need to extend this definition to be able to talk
about ζ(s) for σ > 0.

Lemma 12. For σ > 1,

ζ(s) = 1 +
1

s− 1
− s

∫ ∞
1

{u}
us+1

du.

Proof. By partial summation, for any x,∑
1≤n≤x

n−s =
bxc
xs

+ s

∫ x

1

buc
us+1

du.

The integral here is

s

∫ x

1

u−s du− s
∫ x

1

{u}
us+1

du =
s

s− 1
− s

s− 1
x1−s − s

∫ x

1

{u}
us+1

du.

Since σ > 1, if we take the limit as x→∞, we have

ζ(s) =
s

s− 1
− s

∫ ∞
1

{u}
us+1

du,

noting that the integral converges. �

The integral here is convergent for any σ > 0, and therefore the right hand side
defines an analytic function for σ > 0, aside from a simple pole at s = 1 with
residue 1. We have therefore given an analytic continuation for ζ(s) up to σ = 0.
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3.1. Euler products. Since it is a topic not often covered in analysis courses, we
first take a brief digression to discuss infinite products. If an ∈ C\{0} then the
infinite product

∞∏
n=1

an

is defined to be the limit limN→∞
∏N
n=1 an if this exists and is not zero.

Lemma 13 (Cauchy criterion). If an 6= 0 then the infinite product
∏∞
n=1 an con-

verges if and only if for any ε > 0 there exists N such that∣∣∣∣∣∣
∏

n<k≤m

ak − 1

∣∣∣∣∣∣ < ε

for all m > n ≥ N .

In particular, limn→∞ an = 1. For this reason it is often convenient to change
variables so that we consider the product

∏
(1 + an) instead. We say that

∞∏
n=1

(1 + an)

converges absolutely if and only if
∏

(1 + |an|) converges. The following is a simple
consequence of the Cauchy criterion.

Lemma 14. If an 6= −1 and
∏

(1 + an) converges absolutely then it converges.

The final fundamental fact we will require is the following.

Lemma 15. If an > 0 for all n ≥ 1 then
∏

(1 + an) converges if and only if
∑
an

converges.

Proof. By the monotone convergence theorem, it suffices to show that the partial
sums are bounded above if and only the partial products are. This follows from the
inequalities

a1 + · · ·+ an < (1 + a1) · · · (1 + an) ≤ ea1+···+an .

�

All of the infinite products we will encounter in this course will converge ab-
solutely. The previous lemmas have the following useful consequence: if

∑
|an|

converges (and an 6= −1) then the product
∏∞
n=1(1 + an) converges. In particular,

it is not zero!

Lemma 16. If f is multiplicative and
∑
|f(n)|n−σ converges then

∞∑
n=1

f(n)n−s =
∏
p

(
1 + f(p)p−s + f(p2)p−2s + · · ·

)
.

Proof. Note that this product is absolutely convergent. By comparison each sum
in the product is absolutely convergent. Since a product of finitely many absolutely
convergent series can be arbitrarily rearranged, for any y∏

p≤y

(
1 + f(p)p−s + f(p2)p−2s + · · ·

)
=

∑
n

p|n =⇒ p≤y

f(n)n−s.



14 THOMAS F. BLOOM

Therefore the difference between the product here and the Dirichlet series is at
most ∑

n>y

|f(n)|n−σ → 0 as y →∞.

�

Corollary 1 (Euler product). If f is completely multiplicative and
∑
|f(n)|n−σ

converges then
∞∑
n=1

f(n)n−s =
∏
p

(
1− f(p)

ps

)−1

.

In particular, we note the Euler product for ζ(s):

ζ(s) =
∏
p

(
1− 1

ps

)−1

,

which is valid for σ > 1. From this it follows that ζ(s) 6= 0 for σ > 1. The Euler
product leads to the identity

1

ζ(s)
=
∏
p

(
1− 1

ps

)
=
∑
n

µ(n)

ns
.

Furthermore, when σ > 1, the series is absolutely convergent, and so the derivative
can be computed summand by summand, leading to

ζ ′(s) = −
∑
n

log n

ns
.

From the Euler product we have

log ζ(s) = −
∑
p

log
(
1− p−s

)
=
∑
p

∞∑
k=1

1

kpks
=
∑
n

Λ(n)

log n
n−s.

Finally, taking the derivative of this, we obtain the Dirichlet series with Λ(n) as
coefficients:

ζ ′

ζ
(s) = −

∑
n

Λ(n)

ns
.

4. Gamma function

The Gamma function is a key player in the theory of the Riemann zeta function.
You have probably encountered before in analysis, but we will briefly give a quick
tour through its definition and most important properties.

4.1. The Weierstrass definition. This is different from the integral definition
you have probably seen before, but has several advantages, not the least is that we
can immediately define Γ(s) as a meromorphic function on the whole of C, rather
than just the half-plane where σ > 0. Recall that the Euler constant is defined to
be

γ = lim
N→∞

(
N∑
n=1

1

n
− logN

)
= 0.5772157 · · ·
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and define the Gamma function Γ(s) : C→ C by

1

Γ(s)
= seγs

∞∏
n=1

e−s/n
(

1 +
s

n

)
.

This product is analytic for all s ∈ C, because when |s| ≤ N/2 the series

∞∑
n=N+1

(
log
(

1 +
s

n

)
− s

n

)
is absolutely and uniformly convergent, and so its exponential is also an analytic
function. This shows that the product is an analytic function for |s| ≤ N/2, and
we then take N arbitrarily large.

It is clear from this expression that Γ(s) itself is analytic at all s ∈ C apart from
simple poles at s = 0,−1,−2, . . ..

4.2. The Euler definition. Inserting the definition of γ gives

1

Γ(s)
= s lim

N→∞
e(

∑N
m=1

1
m−logN)s

N∏
n=1

e−s/n
(

1 +
s

n

)
= s lim

N→∞
N−s

N∏
n=1

(
1 +

s

n

)
= s lim

N→∞

(
1 +

1

N

)s N∏
n=1

(
1 +

s

n

)(
1 +

1

n

)−s
,

whence we have the following formula of Euler,

Γ(s) =
1

s

∞∏
n=1

(
1 +

1

n

)s (
1 +

s

n

)−1

,

valid for all s ∈ C except s = 0,−1,−2, . . .. It follows that Γ(1) = 1. Rewriting
this, we also get

Γ(s) = lim
N→∞

Ns (N − 1)!

s(s+ 1) · · · (s+N − 1)
.

4.3. The difference equation. By Euler’s formula, if s is not a negative integer,

Γ(s+ 1)

Γ(s)
=

s

s+ 1
lim
N→∞

N∏
n=1

(
1 + 1

n

)
(s+ n)

s+ n+ 1

= s lim
N→∞

N + 1

s+N + 1
= s,

whence

Γ(s+ 1) = sΓ(s).

In particular, since Γ(1) = 1, if s is a positive integer then Γ(s) = (s− 1)!.
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4.4. The reflection formula.

Γ(s)Γ(1− s) =
1

s(1− s)

∞∏
n=1

1 + 1/n(
1 + s

n

) (
1 + 1−s

n

)
=

1

s(s− 1)

∞∏
n=1

1(
1 + s

n

) (
1− s

n+1

)
=

1

s

∞∏
n=1

(
1− s2

n2

)−1

=
π

sin(πs)
,

using the identity sin(πs) = πs
∏∞
n=1

(
1− s2

n2

)
(an important exercise to prove if

you haven’t seen this before). It follows, for example, that Γ(1/2) =
√
π. It also

follows that the residue of Γ(s) at s = −n is (−1)n/n!.

4.5. The duplication formula. Consider the expression

22sΓ(s)Γ
(
s+ 1

2

)
2Γ(2s)

.

We claim that this is independent of s. To see this, we calculate using Euler’s
formula that it is

22s−1
limN→∞

1·2···(N−1)Ns

(s)···(s+N−1) · limN→∞
1·2···(N−1)Ns+1/n

(s+ 1
n )···(s+ 1

n+N−1)

limN→∞
1·2···(2N−1)(2N)2s

2s(2s+1)···(2s+2N−1)

which is

lim
N→∞

((N − 1)!)2N1/222N−1

(2N − 1)!
,

and in particular independent of s. To evaluate it we set s = 1/2, yielding

Γ

(
1

2

)
=
√
π

We have proved the duplication formula

Γ(s)Γ

(
s+

1

2

)
= 21−2sπ1/2Γ(2s).

4.6. Euler’s integral expression. By integration by parts∫ N

0

(
1− t

N

)N
ts−1 dt = Ns

∫ 1

0

(1− t)N ts−1 dt

= Ns N !

s(s+ 1) · · · (s+N)

→ Γ(s)

as N → ∞ using Euler’s formula. This is valid if σ > 0, whence we have the
formula for this region (that you’ve probably seen before)

Γ(s) =

∫ ∞
0

e−tts−1 dt.



ANALYTIC NUMBER THEORY 17

5. Functional equation

Theorem 4 (Functional equation). The zeta function ζ(s) can be extended to a
function meromorphic on the whole complex plane, and for all s satisfies the identity

ζ(s) = 2sπs−1 sin(πs/2)Γ(1− s)ζ(1− s).

Many interesting facts can be deduced from this identity. We will first use it to
study the possible poles of ζ(s). We know that ζ(s) has a simple pole at s = 1, and
nowhere else for σ > 0. Suppose that ζ has a pole at s 6= 0 with σ ≤ 0. Then so too
does Γ(1− s)ζ(1− s), but both Γ(s) and ζ(s) are holomorphic at 1− s, which is a
contradiction. Furthermore, ζ(s) cannot have a pole at s = 0, since the right-hand
side has just a simple pole from ζ(1−s) which is cancelled by the zero of sin(πs/2).
It follows that ζ(s) only has one pole in C, which is a simple pole at s = 1.

We will now consider the zeros of ζ(s). We have already seen that ζ(s) 6= 0 for
σ > 1, which follows from the existence of an Euler product. Suppose that ζ(s) = 0
for some s with σ < 0. It follows that

sin(πs/2)Γ(1− s)ζ(1− s) = 0.

Again, neither Γ(1 − s) nor ζ(1 − s) can be zero or a pole, and so sin(πs/2) = 0,
which means s must be an even integer. These are called the trivial zeros of ζ(s),
located at s = −2,−4,−6, . . .. Since there are no zeros with σ > 1, there are no
other zeros with σ < 0.

Aside from the trivial zeros, then, all zeros of ζ must lie in the critical strip
0 ≤ σ ≤ 1. Furthermore, since the other factors in the functional equation are
holomorphic and non-zero in this strip (aside from s = 1, which is easily dealt
with), this implies that if ρ is a zero in the critical strip, then so too is 1−ρ. There
is therefore a symmetry around the critical line σ = 1/2. The Riemann hypothesis
is motivated in part by the belief that this symmetry should collapse so that all the
zeros are located exactly on this line.

There are many different ways to prove the functional equation. We give two
quite different methods to demonstrate this (see Chapter 2 of Titchmarsh for many
more).

5.1. Method One. We first extend the definition of the zeta function to a larger
half-plane. Recall that for σ > 0 we defined

ζ(s) = 1 +
1

s− 1
− s

∫ ∞
1

{u}
us+1

du.

We will extend the region where this is valid by integrating by parts. First let
f(x) = 1

2 − {x}, so that

ζ(s) =
1

2
+

1

s− 1
+ s

∫ ∞
1

f(u)

us+1
du.

If we let F (x) =
∫ x

0
f(u) du then, by integration by parts,∫ ∞

1

f(u)

us+1
= [F (u)u−s−1]∞1 + (s+ 1)

∫ ∞
1

F (u)

us+2
du.

Since F (x) is bounded, the integral here converges for any s with σ > −1, and
hence the left-hand side also converges in this region. We may therefore take

ζ(s) =
1

2
+

1

s− 1
+ s

∫ ∞
1

f(u)

us+1
du



18 THOMAS F. BLOOM

as the definition of ζ(s) in the half-plane σ > −1. If −1 < σ < 0 then∫ 1

0

f(u)

us+1
du =

1

2

∫ 1

0

1

us+1
du−

∫ 1

0

1

us
du = − 1

2s
+

1

s− 1
,

and so in this strip

ζ(s) = s

∫ ∞
0

f(u)

us+1
du.

We now note that f(x) is a periodic function, continuous in (0, 1), and so it has a
Fourier series, which is

f(u) =

∞∑
n=1

sin(2πnu)

πn
.

For −1 < σ < 0 we therefore get

ζ(s) = s

∫ ∞
0

1

us+1

∞∑
n=1

sin(2πnu)

πn
du =

s

π

∞∑
n=1

1

n

∫ ∞
0

sin(2πnu)

us+1
du.

We should justify the interchange of integral and summation here. We can in-
terchange the infinite sum with any finite integral by the dominated convergence
theorem, since the partial sums converge almost-everywhere pointwise, and are
bounded above by O(1). We then note that for any λ,∫ ∞

λ

sin(2πnx)

xs+1
dx =

[
−cos(2πnx)

2nπxs+1

]∞
λ

− s+ 1

2nπ

∫ ∞
λ

cos(2πnx)

xs+2
dx

= O

(
1

nλσ+1

)
+O

(
1

n

∫ ∞
λ

1

xσ+2
dx

)
= O

(
1

nλσ+1

)
.

It follows that

lim
λ→∞

∞∑
n=1

1

n

∫ ∞
λ

sin(2nπx)

xs+1
dx = 0

for −1 < σ < 0. It follows that (in brief) for any λ > 0

∞∑
n=1

∫ ∞
0

=

∞∑
n=1

∫ λ

0

+

∞∑
n=1

∫ ∞
λ

=

∫ λ

0

∞∑
n=1

+

∞∑
n=1

∫ ∞
λ

→
∫ ∞

0

∞∑
n=1

as λ→∞.
By change of variable, we have∫ ∞

0

sin(2πnu)

us+1
= (2πn)s

∫ ∞
0

sin(u)

us+1
du.

Considering the contour integral along a quarter circle with radius tending to in-
finity gives ∫ ∞

0

u−s−1e−iu du = is
∫ ∞

0

t−s−1e−t dt

and ∫ ∞
0

u−s−1eiu du = (−i)s
∫ ∞

0

t−s−1e−t dt



ANALYTIC NUMBER THEORY 19

and so, using the fact that sin(u) = 1
2i (e

iu − e−iu),∫ ∞
0

sinu

us+1
du =

1

2i

(∫ ∞
0

u−s−1eiu du−
∫ ∞

0

u−s−1e−iu du

)
=

1

2i
((−i)s − is)

∫ ∞
0

u−s−1e−u du

= − sin(πs/2)

∫ ∞
0

u−s−1e−u du

= − sin(πs/2)Γ(−s).

Combining the above we have shown that, for −1 < σ < 0,

ζ(s) = − s
π

∞∑
n=1

(2πn)s

n
sin(πs/2)Γ(−s) = 2sπs−1 sin(πs/2)Γ(1− s)ζ(1− s),

where we have used the difference equation to see that −sΓ(−s) = Γ(1 − s). The
right-hand side is actually analytic for any σ < 0, and hence we can take the right-
hand side to be a definition of ζ(s) in this region. By analytic continuation it follows
that this identity must hold for all s ∈ C.

5.2. Method Two. This is one of the methods used by Riemann and, in my
opinion, one of the most natural ways to proceed. When attempting to understand
the zeta function with complex analysis, as Riemann set out, it is reasonable to ask
whether we can write it as a contour integral. Equipped with this, we then evaluate
it using the method of residues and the functional equation drops out.

Lemma 17. For σ > 1

ζ(s) =
1

Γ(s)

∫ ∞
0

xs−1

ex − 1
dx.

Proof. The key observation is that

Γ(s)

ns
=

1

ns

∫ ∞
0

us−1e−u du =

∫ ∞
0

xs−1e−nx dx.

We then sum both sides over n, and note that
∑
e−nx = (ex − 1)−1. We can

interchange the sum and integral here by absolute convergence, since σ > 1, as∑∫ ∞
0

xσ−1e−nx dx = Γ(σ)ζ(σ)

converges for σ > 1. �

Lemma 18. For σ > 1

ζ(s) =
e−iπs

2πi
Γ(1− s)

∫
C

zs−1

ez − 1
dz

where the contour goes from positive infinity, circles the origin, and returns to
infinity, where zs−1 is defined as exp((s − 1) log z) with the logarithm real at the
beginning of the contour.

Proof. Suppose the circle part has radius ε. On the circle,∣∣zs−1
∣∣ = e(σ−1) log|z|−t arg(z) ≤ |z|σ−1

e2π|t|
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<

=

ε

Figure 1. The contour C of Lemma 18.

and

|ez − 1| � |z|
and so the integral around the circle tends to zero as ε → 0. It follows that the
integral is

−
∫ ∞

0

xs−1

ex − 1
dx+

∫ ∞
0

(xe2πi)s−1

ex − 1
dx = (e2πis − 1)Γ(s)ζ(s).

Since

sin(s) =
eis − e−is

2i
=
e2is − 1

2ieis

by the reflection formula

Γ(s)Γ(1− s) =
π

sin(πs)
=

2πieiπs

e2πis − 1

and the result follows. �

So far we’ve been working in the half-plane σ > 1. The integral over C, however,
is uniformly convergent in any finite region, and so the right-hand side defines a
meromorphic continuation of ζ to the entire complex plane, with the only possible
poles those of Γ(1− s), which are s = 1, 2, 3, . . ., and hence just at s = 1.

For the functional equation, now take the integral Cn which is the positive real
axis from ∞ to (2n + 1)π, round the square ±1 ± i then back to infinity. Moving
from C to Cn we pick up poles at ±2iπ, . . . ,±2inπ. The residues from ±2πim are
together

(2mπi)s−1 + (−2mπi)s−1 = (2mπ)s−1eiπ(s−1)2 cos(π(s− 1)/2)

= −2(2mπ)s−1eiπs sin(πs/2).

It follows that the integral is∫
Cn

zs−1

ez − 1
dz + 4πieiπs sin(πs/2)

n∑
m=1

(2mπ)s−1.

We now take σ < 0 and let n → ∞. The function 1/(ez − 1) is bounded on the

contours Cn, and zs−1 = O(|z|σ−1
), so the integral around Cn tends to 0 as n→∞.
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<

=

(2n+ 1)π(1 + i)

Figure 2. The contour Cn with poles at ±2πi, . . . ,±2πin marked
in red, and the previous contour C marked in blue.

It follows that ∫
C

zs−1

ez − 1
dz = 4πieiπs sin(πs/2)(2π)s−1ζ(1− s),

so that for σ < 0

ζ(s) =
e−iπs

2πi
Γ(1− s)4πieiπs sin(πs/2)(2π)s−1ζ(1− s).

This verifies the functional equation for σ < 0. As before, by analytic continuation,
we deduce that it holds for all s.

6. Special values of zeta

If we let

z

ez − 1
=

∞∑
n=0

Bn
n!
zn,

then Bn are known as the Bernoulli numbers. Multiplying out both sides by ez − 1
it follows that

z =

∑
n≥0

Bn
n!
zn

∑
m≥1

1

m!
zm

 =
∑
k≥1

 ∑
n+m=k
n≥0,m≥1

Bn
n!m!

 zk

and so B0 = 1 and for k ≥ 2∑
0≤n≤k−1

Bn
n!(k − n)!

= 0 =
∑

0≤n≤k−1

(
k

n

)
Bn.

This shows that each Bn is a rational number, and allows for efficient computation.
For example, B1 = − 1

2 , B2 = 1
6 , B3 = 0, B4 = − 1

30 , and so on.
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Recall that by Lemma 18 we have, for any s 6= 1, 2, 3, . . .,

ζ(s) =
e−iπs

2πi
Γ(1− s)

∫
C

zs−1

ez − 1
dz.

When s = −m ≤ 0 is an integer the contour integral can be evaluated using the
theory of residues. Inside C there is only a single pole at z = 0, and since

z−m−1

ez − 1
= z−m−2

∞∑
n=0

Bn
n!
zn

the residue at z = 0 when s = −m is Bm+1/(m+ 1)!. It follows that

ζ(0) = −1

2
and ζ(−m) =

(−1)mBm+1

m+ 1
for m ≥ 1.

Since we already know that ζ(−2k) = 0 for k ≥ 1 it follows that Bn = 0 whenever
n ≥ 3 is odd, something not at all obvious from the definition! Furthermore, it
follows from the functional equation that for m ≥ 1

ζ(2m) = 22mπ2m−1 sin(πm)Γ(1− 2m)ζ(1− 2m)

= −22mπ2m−1 sin(πm)Γ(1− 2m)
B2m

2m

= (−1)m+122m−1π2m B2m

(2m)!
.

Here we have used the fact that sin(πm)Γ(1− 2m) = (−1)mπ/2(2m− 1)!, which is
not immediately obvious, since it is the product of a zero and a pole. One way to
check this is to note that sin(πz) has a simple zero at z = m around which it can be
expanded as (−1)mπ(z −m) +O((z −m)3) and Γ has a simple pole at s = 1− 2m
with residue (−1)2m−1/(2m− 1)!, and hence near z = m we have

sin(πz)Γ(1− 2z) =
(
(−1)mπ(z −m) +O((z −m)3)

)( (−1)2m−1

(2m− 1)!

1

(2m− 2z)
+O(1)

)
= (−1)m

π

2(2m− 1)!
+O(z −m).

For example, using the previous values for the Bernoulli numbers B2 and B4 we
deduce that ζ(2) = π2/6 and ζ(4) = π4/90. Note that if we want to recover the
values of ζ at positive odd integers then things are not so simple – for now the
functional equation gives

ζ(2m+ 1) = (−1)m22m+1π2mΓ(−2m)ζ(−2m).

Now the pole of Γ at s = −2m is cancelled by the zero of ζ(−2m) but we have no
idea what Γ(−2m)ζ(−2m) is because we don’t know what ζ ′(−2m) is. We were
lucky in the case of even arguments that the pole of Γ is cancelled by the zero of
sin, both of which we understand well.

Unlike the case for even integers it is believed that ζ(2m+1)/π2m+1 is irrational
for all m ≥ 1. This is not known for any m. It is even more likely that ζ(2m+ 1) is
irrational – this is only known for ζ(3) at the moment, which was shown by Roger
Apéry in 1978.
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Finally, in the next chapter we will need to know the value of ζ ′(0). This can be
calculated as follows. Recall in the proof that∑

n≤x

1

n
= log x+ γ +O(1/x)

we obtained the explicit representation

γ = 1−
∫ ∞

1

{t}
t2

dt.

If we let s→ 1 in the expression

ζ(s) = 1 +
1

s− 1
− s

∫ ∞
1

{t}
ts+1

dt

then we see that ζ(s) = 1
s−1 + γ +O(s− 1) near s = 1.

Finally, from the functional equation we have, near s = 1,

1 + γ(s− 1) + · · · = (s− 1)ζ(s) = −2sπs−1Γ(2− s) sin(πs/2)ζ(1− s).

Differentiating both sides and setting s = 1 gives

γ = 2ζ ′(0)− 2ζ(0) log 2π + 2ζ(0)Γ′(1).

Using the fact that ζ(0) = −1/2 and Γ′(1) = −γ (which can be seen, for example,
from the Weierstrass definition), it follows that

ζ ′(0) = −1

2
log(2π),

and hence

−ζ
′(0)

ζ(0)
= − log(2π).

7. Counting zeros of zeta

Recall that a holomorphic non-zero function has only a finite number of zeros
in any compact region (otherwise there exists an infinite sequence of zeros, and
hence an infinite convergent sequence of zeros, and hence the function is zero by
the Identity Theorem). It therefore makes sense to count them. We are interested
in the zeros of the zeta function, which we know (aside from the trivial zeros) all
lie in the rectangular strip 0 ≤ σ ≤ 1.

To make this a compact region, we introduce some cut-off at height t = T on the
imaginary axis. It is a natural question to ask how the number of zeros changes as
we increase T . To this end, let N(T ) count the number of zeros ρ = β + iγ in the
region 0 ≤ β ≤ 1 and 0 ≤ γ ≤ T .

Our main tool is the following useful bound from complex analysis.

Lemma 19 (Jensen’s inequality). Suppose that f(z) is analytic in a domain con-
taining a disc with radius R and centre a, that |f(z)| ≤ M in this disc, and that
f(a) 6= 0. Let 0 < r < R. The number of zeros of f in the disc with centre a and
radius r is at most

log(M/ |f(a)|)
log(R/r)

.
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Proof. Without loss of generality we can assume that a = 0. As above, the number
of zeros in |z| < R is finite . Let these zeros be denoted by z1, z2, . . . , zK . Let

g(z) = f(z)

K∏
k=1

R2 − zzk
R(z − zk)

.

Observe that the kth factor has a pole at zk, and has modulus 1 on |z| = R. It
follows that g is an analytic function in |z| ≤ R, and if |z| = R then |g(z)| =
|f(z)| ≤M . By the maximum modulus principle,

|g(0)| = |f(0)|
K∏
k=1

R

|zk|
≤M.

Each factor is ≥ 1 and if |zk| ≤ r then the factor is ≥ R/r, and the bound follows.
�

To apply Jensen’s inequality to ζ(s) we first need to give some estimates for how
large ζ(s) can get.

Lemma 20. When δ ≤ σ ≤ 2 and |t| ≥ 3

ζ(s)� (1 + |t|1−σ) min

(
1

|σ − 1|
, log |t|

)
.

Proof. For any x ≥ 2, by partial summation, when σ > 1,

ζ(s) =
∑
n≤x

1

ns
+
x1−s

s− 1
+
{x}
xs
− s

∫ ∞
x

{u}
us+1

du.

By analytic continuation this identity continues to hold for all s 6= 1 with σ > 0.
The second summand is O(x1−σ). The third is O(x−σ). The integral is O(x−σ/σ).
Since |s| /σ � |t| in the given region we have

ζ(s)�
∑
n≤x

1

nσ
+ x1−σ +

|t|
xσ
.

The sum is

� 1 +

∫ x

1

1

uσ
du

uniformly for σ ≥ 0. We choose x = |t|+ 4, say, so that

ζ(s)� 1 + |t|1−σ +

∫ x

1

1

uσ
du.

If |σ − 1| ≤ 1/ log x then the integral is � log x. If 0 ≤ σ ≤ 1 − 1/ log x it is
< x1−σ/(1− σ). If σ ≥ 1 + 1/ log x then it is < 1/(σ − 1). The result follows. �

We can now use Jensen’s inequality to give an upper bound on the number of
zeros in the critical strip at a certain height.

Theorem 5. For any T ≥ 4

N(T + 1)−N(T )� log T.
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Proof. By the symmetry of zeros implied by the functional equation, it suffices
to show that the number of zeros in the rectangle between 1/2 ≤ σ ≤ 1 and
T ≤ t < T + 1 is O(log T ). We apply Jensen’s inequality to ζ(s) to discs with
centre 2 + i(T + 1/2) and radii R = 11/6 and r = 7/4, say, which certainly includes
this rectangle.

By Lemma 20 we know that |ζ(s)| � T in this disc, and furthermore

|ζ(2 + i(T + 1/2))− 1| ≤
∑
n≥2

1

n2
≤ 3/4

and so |ζ(2 + i(T + 1/2))| ≥ 1/4, say. The result follows from Jensen’s inequality.
�

<

=

σ = 0 σ = 1

2 + i(T + 1
2 )

t = T

t = T + 1

Figure 3. We bound the number of zeros in the rectangle 1/2 ≤
σ ≤ 1 and T ≤ t ≤ T + 1 by bounding the number in the circle.

It follows that N(T )� T log T . Note that this is only an upper bound – at the
moment, we don’t know there are any zeros at all the critical strip, so it is possible
that N(T ) = 0. We will later show that, not only are there many zeros, but T log T
is the right order of magnitude, establishing the asymptotic formula

N(T ) ∼ 1

2π
T log T.



CHAPTER 3

Explicit formula

It is time to see some number-theoretic rewards for all our work trying to under-
stand ζ(s). The goal of this chapter is to prove the Riemann-von Mangoldt explicit
formula, which expresses ψ(x) as a sum over the zeros of ζ(s):

ψ(x) =
∑
n≤x

Λ(n) = x−
∑
ρ

xρ

ρ
− log(2π)− 1

2
log(1− 1/x2),

where ρ runs over all the zeros of ζ(s) in the critical strip 0 ≤ σ ≤ 1. This was done
by Riemann in his 1859 paper, and is the first great demonstration of how complex
analysis can be used to understand number theory.

8. Perron’s formula

By partial summation one can show that if

F (s) =
∑
n

an
ns

and A(x) =
∑
n≤x

an

then

F (s) = s

∫ ∞
1

A(u)

us+1
du.

That is, F (s) can be expressed as a function of A(x). We are more interested in the
converse, in how information about F (s) can be converted into information about

A(x). For example, if an = Λ(n), then F (s) = − ζ
′

ζ (s), which we hope we can

understand via analysis, and A(x) =
∑
n≤x Λ(n) = ψ(x), the asymptotics of which

are the subject of the prime number theorem.
There is a formula that gives A(x) in terms of F (s), known as Perron’s formula.

The starting point is the following identity.

Lemma 21. If σ0 > 0 then

1

2πi

∫ σ0+iT

σ0−iT

ys

s
ds =

{
1 if y > 1 and

0 if 0 < y < 1
+O

(
yσ0

T log y

)
.

Proof. Let y > 1, u < 0, and let C be the rectangular contour with corners at
u± iT and σ0± iT . The function ys/s is analytic apart from a simple pole at s = 0,
where the residue is 1. It follows that

1

2πi

∫
C

ys

s
ds = 1.

We can bound the contribution from the top and bottom by∫ σ0−±iT

u±iT

ys

s
ds =

∫ σ0

u

yσ±iT

σ ± iT
dσ � 1

T

∫ σ0

u

yσ dσ ≤ 1

T

∫ σ0

−∞
yσ dσ =

yσ0

T log y
.

26
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Note that here we used that y > 1 for the final part, to ensure that yu → 0 as
u→ −∞. The contribution from the left-hand side of the rectangle is

�
∫ T

−T

yu

|u− it|
dt� T

yu

u
→ 0 as u→ −∞.

The case 0 < y < 1 is similar, but we need to take u→ +∞. �

u− iT σ0 − iT

σ0 + iTu+ iT

<

=

Figure 4. The contour C used in the proof of Lemma 21.

In Lemma 21 we have used a complex integral to ‘detect’ whether an arbitrary
parameter y is > 1. If we choose y = x/n then this can be used to detect the
condition n < x. Summing over all n leads to the following.

Theorem 6 (Perron’s formula). Suppose that F (s) =
∑ an

ns is absolutely convergent
for σ > σa. If σ0 > max(0, σa) and x > 0 is not an integer then, for any T ≥ 1,

∑
n<x

an =
1

2πi

∫ σ0+iT

σ0−iT
F (s)

xs

s
ds+O

2σ0
x

T

∑
x/2<n<2x

|an|
|x− n|

+
xσ0

T

∑
n

|an|
nσ0

 .

Proof. Since σ0 > 0, by Lemma 21 we can write

1n<x =
1

2πi

∫ σ0+iT

σ0−iT

(x/n)s

s
ds+O

(
(x/n)σ0

T log(x/n)

)
.

It follows that, since the series converges absolutely, and hence uniformly on the
contour we’re integrating over, so we can interchange it with the integral,∑

n<x

an =

∞∑
n=1

an1n<x

=
1

2πi

∞∑
n=1

an

(
1

ns

∫ σ0+iT

σ0−iT

xs

s
ds+O

(
(x/n)σ0

T log(x/n)

))

=
1

2πi

∫ σ0+iT

σ0−iT
F (s)

xs

s
ds+O

(
xσ0

T

∑
n

|an|
nσ0 |log(x/n)|

)
To simplify the error term, write log(x/n) = |log(1 + (n− x)/x)| and use the fact
that |log(1 + δ)| � |δ| uniformly for −1/2 ≤ δ ≤ 1, so that |log(x/n)| � n−x

x
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uniformly for x/2 < n < 2x. For other values of n, we have |log(x/n)| � 1. The
error term is therefore

� 2σ0x

T

∑
x/2<n<2x

|an|
|x− n|

+
xσ0

T

∑
n

|an|
nσ0

.

�

9. Estimates for ζ ′/ζ

To apply Perron’s formula to obtain an explicit formula we will need to evaluate

a contour integral of ζ′

ζ (s)x
s

s , which in turn will require some estimates on how

large ζ′

ζ can get. These will be established in this section.

First, we prove a useful tool from complex analysis that allows us to control the
absolute value of an analytic function if we can give a one-sided bound on its real
part.

Lemma 22 (Borel-Carathéodory Lemma). Let f be holomorphic on |z| ≤ R such
that f(0) = 0 and suppose <f(z) ≤M for all |z| ≤ R. For any r < R,

sup
|z|≤r

(|f(z)| , |f ′(z)|)�r,R M.

Proof. Let

g(z) =
f(z)

z(2M − f(z))
,

so that g is holomorphic for |z| ≤ R. Observe that, using <f(z) ≤M ,

|f(z)|2 = <(f(z))2 + =(f(z))2 ≤ (2M −<(f(z)))2 + =(f(z))2 = |2M − f(z)|2 ,

and so |2M − f(z)| ≥ |f(z)| for |z| ≤ R. In particular, if |z| = R then |g(z)| ≤ 1/R.
By the maximum modulus principle, if |z| = r, then

|g(z)| = |f(z)|
r |2M − f(z)|

≤ 1

R
,

and hence

R |f(z)| ≤ |2Mr − rf(z)| ≤ 2Mr + r |f(z)| ,
or

|f(z)| ≤ 2r

R− r
M.

This shows that |f(z)| �M . To deduce the same bound for f ′(z), we use Cauchy’s
formula

f ′(z) =
1

2πi

∫
r′

f(w)

(w − z)2
dw,

where the integral is taken over some circle of radius r < r′ < R, say. �

We now apply this to be able to give an approximate formula for f ′

f in terms of

the zeros of f . To see what kind of formula we should expect, recall the heuristic
that a holomorphic function behaves approximately like a polynomial. If it has
zeros z1, . . . , zk in a disc then we expect f(z) ≈

∏
(z − zk), and hence log f(z) ≈∑

log(z − zk), and so taking derivatives, we get f ′

f (z) ≈
∑

1
z−zk . The following

lemma makes this precise.
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Lemma 23. Suppose that f(z) is analytic on the disc of radius R centred at a,
that |f(z)| ≤ M in this disc, and that f(a) 6= 0. Let 0 < r < R. Then in the disc
of radius r centred at a

f ′

f
(z) =

K∑
k=1

1

z − zk
+O

(
log

M

|f(a)|

)
where the sum is over all zeros zk of f in the disc of radius R centred at a.

Proof. Without loss of generality, we may suppose that a = 0 and f(a) = 1. Let
the zeros in the disc |z| ≤ R be denoted by z1, . . . , zK . Note that by Jensen’s
inequality K � logM . As in the proof of Jensen’s inequality, let

g(z) = f(z)

K∏
k=1

R2 − zzk
R(z − zk)

,

so that g is an analytic function in |z| ≤ R, and if |z| = R then |g(z)| = |f(z)| ≤M .
Furthermore,

|g(0)| =
K∏
k=1

R

|zk|
≥ 1.

We define an analytic function for |z| ≤ R by

h(z) =

∫ z

0

g′(w)

g(w)
dw,

which is permissible since g has no zeros in this disc, so g′/g is analytic. The
derivative is h′(z) = g′(z)/g(z). If we differentiate e−h(z)g(z) then we get

e−h(z)(−h′(z))g(z) + e−h(z)g′(z) = 0,

and hence e−h(z)g(z) is constant on |z| ≤ R, so setting z = 0 we see that

eh(z) =
g(z)

g(0)
.

Taking absolute values then logarithms it follows that, since |g(0)| ≥ 1,

<h(z) = log |g(z)| − log |g(0)| ≤ logM

for all |z| ≤ R. By the Borel-Carathéodory lemma,

|h′(z)| =
∣∣∣∣g′g (z)

∣∣∣∣� logM.

We also have

g′

g
(z) =

f ′

f
(z)−

K∑
k=1

1

z − zk
+

K∑
k=1

1

z −R2/zk
.

If |z| ≤ r then
∣∣z −R2/zk

∣∣ ≥ ∣∣R2/zk
∣∣ − |z| ≥ R − r, and so the final sum is

� logM . �

Before stating the next lemma, we introduce the convention, common to this
subject, that the letter ρ will generally denote non-trivial zeros of ζ(s). Further-
more, just as σ and t are generally used to denote the real and imaginary parts of
a generic complex number s, we use β and γ for the same purposes for zeta zeros,
so ρ = β + iγ. There is an unfortunate clash of convention in that γ is also often
used to denote Euler’s constant, but it should be clear from context what is meant.
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Lemma 24. For t ≥ 4

(1)
ζ ′

ζ
(s) =

∑
ρ

|t−γ|≤1

1

s− ρ
+O(log t),

uniformly for −1 ≤ σ ≤ 2. As above, the use of ρ = β + iγ means that the sum is
restricted to zeros of ζ(s), so the sum is restricted to those zeros whose imaginary
part is within distance 1 of t, the imaginary part of s.

Proof. We apply Lemma 23 to the function f(s) = ζ(s), on some disc with centre
at 3/2 + it and radius 3, say, so that in particular the line from −1 + it to 2 + it
is covered, and the disc stays away from 1, and f(3/2 + it) 6= 0. Furthermore, we

have the bound |ζ(σ + it)| � |t|5, say, uniformly for all σ ≥ −2 and |t| ≥ 3 – this
follows from the fact that |ζ(σ + it)| � |t| for σ ≥ 1/2 and |t| ≥ 3 (as in Lemma 20)
and the functional equation (see also Question 2 on Example Sheet 2). It follows
that in the disc with radius 3− 1

8 , say,

ζ ′

ζ
(s) =

∑
ρ

1

s− ρ
+O(log t)

where the sum ranges over all zeros ρ inside this disc. Notice that every zero ρ with
|t− γ| ≤ 1 is included in this disc. It remains to show that the contribution from
ρ with |t− γ| > 1 is O(log t). For such ρ, when =(s) = t, 1/ |s− ρ| � 1, and hence
the contribution is O(log t) since N(T + 1)−N(T )� log T .

�

Lemma 25. For each T ≥ 2 there is T ≤ T1 ≤ T + 1 such that

ζ ′

ζ
(σ + iT1)� (log T )2

uniformly for −1 ≤ σ ≤ 2.

Proof. Since N(T +1)−N(T )� log T there is T1 ∈ [T, T +1] such that |T1 − γ| �
1/ log T for all zeros ρ. The result follows from (1) since each summand is � log T
and there are O(log T ) many summands. �

Finally, we will need to have a good upper bound for ζ′

ζ (s) when the real part

of s is far to the left of zero. For this we turn, once again, to our old friend
the functional equation. To deduce bounds from this we need to know the size
of Γ. Recall Stirling’s approximation that n! ≈

√
2πn(n/e)n, or in other words,

log n! = n log n − n + O(log n). Reassuringly something similar also holds for
complex values.

Lemma 26 (Stirling’s formula). For |s| ≥ δ and |arg(s)| < π − δ
Γ′

Γ
(s) = log s+O(1) and log Γ(s) = s log s+O(s).

We now use Stirling’s formula coupled with the functional equation to deduce

an upper bound for ζ′

ζ .

Lemma 27. If σ ≤ −1 and |s+ 2k| ≥ 1/4 for all positive integers k then

ζ ′

ζ
(s)� log(|s|+ 1).
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Proof. Logarithmically differentiating the functional equation gives

ζ ′

ζ
(s) = −ζ

′

ζ
(1− s) + log 2π − Γ′

Γ
(1− s) +

π

2
cot(πs/2).

The first two terms contribute O(1). By Stirling’s formula, the second is O(log(|s|+
1)). Finally,

cot(πs/2) = i+
2i

eiπs − 1
� 1,

because we have bounded s away from the possible poles of the left-hand side. �

10. Explicit formula

We can finally prove the explicit formula for ψ(x). We first state a more precise
version, with an error bound in terms of some parameter T .

Theorem 7. If x is not an integer then, for any T ≥ 1,∑
n≤x

Λ(n) = x−
∑
ρ

|γ|≤T

xρ

ρ
− log 2π− 1

2
log(1− 1/x2) +O

(
x

T

(
log(xT )2 +

log x

〈x〉

))
,

where 〈x〉 denotes the distance from x to the nearest prime power.

Proof. Let T ≤ T1 ≤ T+1 be some number to be chosen later. By Perron’s formula,
for any σ0 > 1, ∑

n≤x

Λ(n) = − 1

2πi

∫ σ0+iT1

σ0−iT1

ζ ′

ζ
(s)

xs

s
ds+R

where

R� 2σ0
x

T

∑
x/2<n<2x

Λ(n)

|x− n|
+
xσ0

T

ζ ′

ζ
(σ0).

We choose σ0 = 1 + 1/ log x so that xσ0 � x. Since ζ has a simple pole at s = 1 so

does ζ′

ζ , and hence − ζ
′

ζ (σ0) � 1
σ0−1 = log x, and the second sum in the error term

is O(x log x
T ). Furthermore,∑

x+1≤n<2x

Λ(n)

|x− n|
� log x

x∑
m=1

1

m
� (log x)2.

The contribution from x/2 < n ≤ x− 1 is similarly bounded. The only remaining
contribution is from the n closest to x, which contributes at most O(x log x/T 〈x〉).
It follows that

R� x(log x)2

T
+
x log x

T 〈x〉
.

We will evaluate the integral by replacing it with that over the contour between
σ0 ± iT1 and −K ± iT1, for some odd positive integer K. In this contour, say C,
the integrand has poles at s = 0, 1, and the zeros of ζ(s), which are either count by
ρ or are negative even integers −K < 2k ≤ −2. Therefore

1

2πi

∫
C

ζ ′

ζ
(s)

xs

s
ds = −x+

∑
ρ

|γ|≤T

xρ

ρ
+

∑
1≤k<K/2

x−2k

−2k
+
ζ ′

ζ
(0).
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We divide the integral up as∫
C

=

∫ σ0+iT1

σ0−iT1

+

∫ −1+iT1

σ0+iT1

+

∫ −K+iT1

−1+iT1

+

∫ −K−iT1

−K+iT1

+

∫ −1−iT1

−K−iT1

+

∫ σ0−iT1

−1−iT1

.

The first integral is the main term that we’re after. The second we can bound by

�
∫ −1

σ0

∣∣∣∣ζ ′ζ (σ + iT1)

∣∣∣∣ xσT dσ � (log T )2

T

∫ σ0

−1

xσ dσ � (log T )2

T log x
x,

choosing a suitable value for T1. The third we bound, using log|σ+it|
|σ+it| �

log t
t , by

�
∫ −K
−1

∣∣∣∣ζ ′ζ (σ + iT1)

∣∣∣∣ xσ

|σ + iT1|
dσ � log T

T

∫ −K
−1

xσ dσ � log T

Tx log x
.

The fourth is

�
∫ T1

−T1

∣∣∣∣ζ ′ζ (−K + it)

∣∣∣∣ x−K

|K + it|
dt� 1

KxK

∫ T1

−T1

log |K + it| dt

� T log(KT )

KxK
.

The fifth and sixth can be bounded the same way as the third and second, respec-
tively. Putting all this together we have∑

n≤x

Λ(n) = x−
∑
ρ

|γ|≤T

xρ

ρ
+

∑
1≤k<K/2

x−2k

2k
− ζ ′

ζ
(0)+

O

(
x

T
((log x)2 + (log T )2) +

x log x

T 〈x〉
+
T logKT

KxK

)
.

We now let K →∞. The result follows since ζ(0) = −1/2 and ζ ′(0) = − 1
2 log(2π),

whence ζ′

ζ (0) = log(2π). �

If we let T →∞ we obtain the following corollary.

Corollary 2. If x is not an integer then∑
n≤x

Λ(n) = x− lim
T→∞

∑
ρ

|γ|≤T

xρ

ρ
− log 2π − 1

2
log(1− 1/x2).

The mysterious sum over zeros is hard for us to control at the moment, since
we don’t have much information about where they lie. If we assume the Riemann
Hypothesis, however, we can control it very well.

Corollary 3. If the Riemann Hypothesis is true, so that <ρ = 1/2 for all ρ, then∑
n≤x

Λ(n) = x+O(x1/2(log x)2).

Proof. We can assume that x ≥ 2 is not an integer, and that 〈x〉 ≥ 1, say, both of
which incur a cost of at most O(log x), which can be absorbed into the error term.
Let T ≥ 1 be some parameter to be chosen later. The explicit formula gives

∑
n≤x

Λ(n) = x+O

1 +
∑
ρ

|γ|≤T

xρ

ρ
+
x

T
log(xT )2

 .
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Assuming the Riemann hypothesis,∑
ρ

|γ|≤T

xρ

ρ
� x1/2

∑
ρ

|γ|≤T

1

|ρ|
.

The number of zeros in the region n ≤ t ≤ n+ 1 is O(log n), and in such a region,
|ρ| � n. It follows that∑

ρ
|γ|≤T

1

|ρ|
� 1 +

∑
2≤n≤T+1

log n

n
� (log T )2.

The error term is therefore bounded by

� 1 + x1/2(log T )2 +
x

T
log(xT )2.

If we choose x = T , for example, then the result follows. �

Littlewood has shown that if ψ(x) = x + E(x) then the error term cannot be
bounded better than x1/2 log log log x either way (so it oscillates both positive and
negative around this value). That is, both

lim sup
x→∞

E(x)

x1/2 log log log x
> 0

and

lim inf
x→∞

E(x)

x1/2 log log log x
< 0.



CHAPTER 4

Zeros of Zeta

The explicit formula gives a clear relationship between the distribution of the
primes and the distribution of the zeros of ζ(s) in the critical strip 0 ≤ σ ≤ 1.
We’ve already seen how, assuming the Riemann Hypothesis, we can deduce a very
strong form of the prime number theorem. Unfortunately the Riemann Hypothesis
seems far out of reach, so we should ask, if not that, then what can we can actually
prove about the zeros of ζ(s). In this chapter we will begin this study.

11. Zero-free region

We begin with an ‘easy’ zero-free region, taking advantage of the pole of ζ(s) at
s = 1 to repel zeros.

Theorem 8. If σ > (1 + t2)/2 then ζ(s) 6= 0. In particular, ζ(s) 6= 0 if 8
9 ≤ σ ≤ 1

and |t| ≤ 7
8 . Furthermore,

ζ(s) =
1

s− 1
+O(1) and − ζ ′

ζ
(s) =

1

s− 1
+O(1)

uniformly for 8
9 ≤ σ ≤ 2 and |t| ≤ 7

8 .

Proof. We recall the identity

ζ(s) = 1 +
1

s− 1
− s

∫ ∞
1

{u}
us+1

du.

In particular, ∣∣∣∣ζ(s)− s

s− 1

∣∣∣∣ ≤ |s|σ ,
which proves the first claim and the second. The final claim follows since if ζ(s) =
(s− 1)−1 + f(s) then

ζ ′

ζ
(s) =

−(s− 1)−2 + f ′(s)

(s− 1)−1 + f(s)
=
−1

s− 1
+
f(s) + f ′(s)(s− 1)

1 + f(s)(s− 1)
=
−1

s− 1
+O(1).

�

Unfortunately, this is not enough to prove the prime number theorem. For this,
recall that we get an asymptotic for ψ(x) we needed to consider all zeros up height
aroound T ≈ x, or else the error term would dominate the main term. We therefore
need to rule out zeros too close to the line σ = 1 for arbitrarily large imaginary
parts t. This is provided by the following classical zero-free region, first proved by
de la Vallée Poussin in 1899.

Theorem 9. There is a constant c > 0 such that

ζ(s) 6= 0 for σ ≥ 1− c

log(|t|+ 4)
.

34
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Before proving it we note an immediate corollary, the prime number theorem (at
last!).

Theorem 10 (Prime Number Theorem). There is c > 0 such that

ψ(x) = x+O

(
x

exp(c
√

log x)

)
.

In particular, ψ(x) ∼ x.

Proof. Without loss of generality, we can assume that x is at least 1/4 away from
the nearest integer – for otherwise if |x− n| ≤ 1/4, say, apply the result with x
replaced by x+ 1/2, which is distance at least 1/4 from any integer, and then note
that ψ(x+1/2) = ψ(x)+O(log x). In particular, x is not an integer and 〈x〉 ≥ 1/4.
Let T ≥ 1 be chosen later. By the explicit formula

ψ(x) = x+O

1 +
∑
ρ

|γ|≤T

xρ

ρ
+
x

T
(log(xT ))

2

 .

By the zero-free region in Theorem 9 we know that if ρ = β + iγ is a zero then
β ≤ 1− c/ log T for some constant c > 0. Therefore the error term is

� 1 + x1−c/ log T
∑
ρ

|γ|≤T

1

|ρ|
+
x

T
(log xT )2.

As before, the sum over zeros we can bound by O((log T )2). It remains to choose
the optimal T . For this we try to balance the two main error terms, wanting to
choose T such that

x1−c/ log T ≈ x

T
.

Cancelling the x, taking logarithms, and rearranging, this suggests that T ≈
exp(
√

log x) is an appropriate choice. Indeed, plugging this choice into our error
bounds gives the claimed result. �

Before we prove the zero-free region above, for motivation let us consider how
to establish there are no zeros with σ > 1. We’ve seen already that this is a
consequence of the Euler product representation,

ζ(s) =
∏
p

(
1− 1

ps

)−1

,

which is valid for σ > 1, since the right-hand side is a convergent infinite product
with no zero factors, hence cannot be zero. This is slightly unsatisfactory, however,
since it relies on some (easy, but not immediate) facts about the nature of infinite
products. A more direct proof is to note that( ∞∑

n=1

µ(n)

ns

)
ζ(s) =

∞∑
n=1

1 ? µ(n)

ns
= 1

for σ > 1, where all we have used is that both series are absolutely convergent in
this region, so we can multiply them and obtain another Dirichlet series, and that
1 ? µ(n) = 0 for n > 1, which is an easily checked elementary identity. This implies
that ζ(s) 6= 0 in this region.
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What’s going on here is that we have a nice representation of 1
ζ(s) as a Dirichlet

series when σ > 1, and so it can’t have a pole in this region, and hence ζ(s) can’t
have a zero. We’ve also just seen another way of establishing a zero-free region –
using the pole at s = 1 to ‘repel’ nearby zeros. To get a zero-free region that covers
the entire line σ = 1 we will need to use the combined powers of both the existence
of Dirichlet series for σ > 1 and the presence of a pole at s = 1.

We will first sketch the idea behind the argument. Instead of working with
1
ζ(s) =

∑ µ(n)
ns we will use − ζ

′

ζ (s) =
∑ Λ(n)

ns . This is still has poles at the zeros of

ζ(s), but has the advantage that the coefficients Λ(n) are now non-negative. We
will shortly see why this is useful.

Suppose then that ζ(s) has a simple zero at s = 1 + it, say. It follows that ζ′

ζ (s)

has a simple pole of residue 1 at s, and hence

−ζ
′

ζ
(σ + it) ≈ −1

σ − 1
as σ → 1+.

On the other hand, we know that ζ(s) has a simple pole at s = 1, whence ζ′

ζ has a

simple pole of residue −1 at s, and hence

−ζ
′

ζ
(σ) ≈ 1

σ − 1
as σ → 1+.

Taking real parts of both identities and using the Dirichlet series represention of ζ
′

ζ

we deduce that ∑
n

Λ(n)

nσ
cos(t log n) ≈ −1

σ − 1
≈ −

∑
n

Λ(n)

nσ

as σ → 1+. Heuristically, this suggests that cos(t log p) ≈ −1 for most primes p. It
follows that we should also expect cos(2t log p) ≈ 1 for most primes p, and so∑

n

Λ(n)

nσ
cos(2t log n) ≈ −<ζ

′

ζ
(σ + 2it) ≈ 1

σ − 1
.

This means that ζ(s) would have a pole at s = 1 + 2it, which is a contradiction,
since the only pole of ζ is at s = 1. Note the importance of choosing a Dirichlet
series with non-negative coefficients here – this proof would not work with Λ(n)
replaced by µ(n).

It remains to make this proof sketch rigorous. There are a number of ways of
doing this. We present one of the simplest, using ideas we have already seen in the
proof of the explicit formula. Note the following immediate corollary of Lemma 23.

Corollary 4. If |t| ≥ 7/8 and 5/6 ≤ σ ≤ 2 then

ζ ′

ζ
(s) =

∑
ρ

1

s− ρ
+O(log |t|),

where the sum is over all zeros ρ of ζ(s) in the region |ρ− (3/2 + it)| ≤ 5/6.

Proof of Theorem 9. Let ρ = σ + it be such that ζ(ρ) = 0, and let δ > 0 be
something to be chosen later. By Corollary 4,

−<ζ
′

ζ
(1 + δ + it) = − 1

1 + δ − σ
−<

∑
ρ′ 6=ρ

1

1 + δ + it− ρ′
+O(log t)
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Since <ρ′ ≤ 1 for all zeros ρ′, it follows that <(1/(1 + δ + it − ρ′)) > 0, provided
δ > 0. In particular,

−<ζ
′

ζ
(1 + δ + it) ≤ − 1

1 + δ − σ
+O(log t).

Similarly,

−<ζ
′

ζ
(1 + δ + 2it)� log t.

Finally,

−ζ
′

ζ
(1 + δ) ≤ 1

δ
+O(1).

This follows, for example, from the Dirichlet series representation

−ζ
′

ζ
(1 + δ) =

∞∑
n=1

Λ(n)

n1+δ
≤
∞∑
n=1

log n

n1+δ
≤ 1

δ
+O(1).

Alternatively, you can use the fact that ζ(s) has a simple pole at s = 1 with residue
1, and hence ζ(s) = 1

s−1 +O(1) uniformly in this region, and hence directly calculate

− ζ
′

ζ (s) = 1
s−1 +O(1) in this region.

We now note that

<
(
−3

ζ ′

ζ
(1 + δ)− 4

ζ ′

ζ
(1 + δ + it)− ζ ′

ζ
(1 + δ + 2it)

)
is

∞∑
n=1

Λ(n)

n1+δ
(3 + 4 cos(t log n) + cos(2t log n)) .

Since 3 + 4 cos θ + cos 2θ = 2(1 + cos θ)2 ≥ 0, the entire sum is ≥ 0. It follows that

3

δ
− 4

1 + δ − σ
+O(log t) ≥ 0.

First note that we can immediately deduce that σ 6= 1, or else we’d have 0 ≤
−1
δ + O(log t), which is a contradiction as δ → 0. Suppose then σ < 1 and choose
δ = 4(1− σ), say, so

0 ≤
(

3

4
− 4

5

)
1

1− σ
+O(log t).

Rearranging this implies that there is some constant c > 0 such that 1−σ ≥ c/ log t,
and the proof is complete. �

The idea at the heart of this proof – use the assumption of a zero at σ + it
together with a pole at s = 1 to deduce a pole near σ+2it – has not been improved
in over 120 years. Instead, improvements to this zero-free region have come from
providing better upper bounds for ζ(s) near σ = 1, allowing for the O(log t) error
term we carried throughout the proof to be reduced. Using improved exponential
sum upper bounds this leads to the current best zero-free region (due to Korobov-
Vinogradov-Richert) of σ > 1− c(log t)−2/3(log log t)−1/3.
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12. Asymptotic formula for N(T )

We now return to our study of N(T ), the count of the number of zeros of ζ(s)
in the region 0 < σ < 1 and 0 < t < T . In the second chapter of these notes
we showed that N(T ) � T log T . We now give an asymptotic formula for N(T )
showing that this is the correct order of magnitude. Incidentally, this also gives the
first proof that we’ve seen so far that there are any zeros of the zeta function at all
in the critical strip. (Though that there are infinitely many zeros is also obvious
from the explicit formula since ψ(x) is not a continuous function of x).

Theorem 11.

N(T ) =
T

2π
log

T

2π
− T

2π
+O(log T ).

Proof. We will use what is often called ‘the argument principle’ to count zeros.

This is just the observation that if f has a zero of order k at ρ then f ′

f has a simple

pole of residue k at ρ as well, and therefore the number of zeros inside a contour C

is exactly 1
2πi

∫
C
f ′

f (z) dz by the residue theorem. For this to work we need that f

has no zeros on the contour C itself, and also that f has no poles on or inside C.
To avoid dealing with the pole of ζ(s) at s = 1, we will instead work with a

function that has the same zeros as ζ(s) but is entire. The traditional choice is

ξ(s) =
1

2
s(s− 1)π−s/2Γ(s/2)ζ(s).

Note that the functional equation can be equivalently stated as ξ(s) = ξ(1 − s).
Furthermore, we see that ξ(s) has no poles anywhere, and if ξ(s) = 0 then 0 ≤ σ ≤ 1
and ζ(s) = 0, so ξ(s) has zeros only at the non-trivial zeros of ζ(s).

Without loss of generality we can assume that there is no zero at height exactly
T . The argument principle then gives that

N(T ) =
1

2πi

∫
C

ξ′

ξ
(s) ds,

where the contour C is a rectangle between −1, 2, 2 + iT,−1 + iT . We first split
the contour by a vertical line at σ = 1/2. The functional equation implies that
ξ′

ξ (s) = − ξ
′

ξ (1− s), and hence the integral along the left-hand piece is equal to the

integral on the contour from 1/2 − iT to 2 − iT to 2 to 1/2. The integrals along
[1/2, 2] go in both directions so they cancel, and we are left with

N(T ) =
1

2πi

∫
C′

ξ′

ξ
(s) ds

where C ′ consists of three line segments, from 1/2 − iT to 2 − iT to 2 + iT to
1/2 + iT .

We now use the definition of ξ(s) to expand

ξ′

ξ
(s) =

1

s
+

1

s− 1
+
ζ ′

ζ
(s) +

1

2

Γ′

Γ
(s/2)− s

2
log π.

Note that f ′

f is the derivative of log f(s), provided we can take branch cuts con-

taining all possible zeros of f(s). Our contour C ′ avoids all such branch cuts, since
we can take lines from each zero going left to −∞. Therefore in some open re-
gion containing our contour the integrand is the derivative of some single-valued
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holomorphic function, and we can use the fundamental theorem of calculus. This
gives

N(T ) =
1

2πi

[
log s+ log(s− 1) + log ζ(s) + log Γ(s/2)− s

2
log π

]1/2+iT

1/2−iT
.

The first summand contributes 1
2πi · iπ + O(1/T ) = 1

2 + O(1/T ), and similarly

for the second. The final summand contributes − log π
2π T .

We now recall that by Stirling’s formula at s = 1
4±

iT
2 we have the approximation

log Γ(s) = s log s− s+O(log s),

and so, since the argument of 1
4 + iT

2 is π/2 +O(1/T )

1

2πi
[log Γ(s/2)]

1/2+iT
1/2−iT =

1

2πi

(
iT log

∣∣ 1
4 + iT

2

∣∣− iT +O(log T )
)

=
T

4π
log( 1

16 + T 2

4 )− T

2π
+O(log T )

=
T

2π
log(T/2)− T

2π
+O(log T ),

since log(1/16 + T 2/4) = log(T 2/4) + O(1/T 2). Combining what we have so far,
we have shown that

N(T ) =
T

2π
log

(
T

2π

)
− T

2π
+O(log T ) + S(T ),

where

S(T ) =
1

2πi
[log ζ(s)]

1/2+iT
1/2−iT .

It remains to show that this (which is 1
π multiplied by the changing in the argument

of ζ(1/2 + iT )) is O(log T ). Note that the real parts cancel, so it is enough to show
that = log ζ(1/2± iT ) = O(log T ). For this, recall that uniformly for −1 ≤ σ ≤ 2,
we have

ζ ′

ζ
(s) =

∑
ρ

|γ−T |≤1

1

s− ρ
+O(log T ).

Since there is no zero at height T , we can write

=
∫ 2

1/2

ζ ′

ζ
(σ + iT ) dσ = = (log ζ(2 + iT )− log ζ(1/2 + iT )) .

The first part is O(1), since when σ > 1 we have log ζ(s) =
∑∞
n=1

Λ(n)
lognn

−s. The

left-hand side is

−
∑
ρ

|γ−T |≤1

∫ 2

1/2

= 1

σ + iT − ρ
dσ +O(log T ).

To bound each summand for fixed ρ = β + iγ we write it as∫ 2

1/2

γ − T
(σ − β)2 + (γ − T )2

dσ

which is, with the change of variable σ − β = u(γ − T ) (note that γ − T 6= 0), at
most ∫ ∞

−∞

1

1 + u2
du = π = O(1).
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Thus there are O(log T ) summands each of size O(1), and therefore

= log ζ(1/2 + iT ) = O(log T ).

The proof is complete. �

To quote Montogomery and Vaughan, “It is remarkable that [Theorem 11] is
perhaps the only theorem on the Riemann zeta function that has not seen some
significant improvement in the last 100 years.”

13. Zeros and error terms

From the explicit formula we see, heuristically at least, that a zero with real
part σ should give an error term of size � xσ. To make this precise we need the
following lemma of Landau.

Lemma 28 (Landau). Supppose that A is an integrable function bounded in any
finite interval, A(x) ≥ 0 for all large x ≥ X, and let

σc = inf

{
σ :

∫ ∞
X

A(x)x−σ dx <∞
}
.

The function

F (s) =

∫ ∞
1

A(x)x−s dx

is analytic in σ > σc but not at s = σc.

We will use the following very useful consequence of this lemma. Suppose that

(1) F (s) is defined in some half plane σ > σ1 by the absolutely convergent
integral described in the lemma (and hence defines an analytic function in
this half-plane), that

(2) F (s) can be continued to some function (possibly with poles) to some half-
plane σ > σ0, and

(3) there are no poles of F (s) on the real line s = σ with σ > σ0.

Then in fact there are no poles of F (s) at all in the half-plane σ > σ0! This is a
very useful consequence of the non-negativity of the integral defining F (s).

Proof. Divide the integral in the definition of F to [1, X] and [X,∞), given a
corresponding decomposition into F = F1 + F2, say. The function F1 is entire.
For σ > σc, the integral converges absolutely, and hence F2 also defines an entire
function. Suppose that F2 is analytic at s = σc. We may expand F2(s) as a power
series at s = σc + 1, so that

F2(s) =

∞∑
k=0

ck(s− 1− σc)k,

where

ck =
F

(k)
2 (1 + σc)

k!
=

1

k!

∫ ∞
X

A(x)(− log x)kx−1−σc dx.

The radius of convergence of this power series is the distance from 1 + σc to the
nearest singularity of F2(s), and hence by assumption is at least 1 + δ for some
δ > 0, say. If we consider s = σc − δ/2, then

F2(s) =

∞∑
k=0

(1 + σc − s)k

k!

∫ ∞
X

A(x)(log x)kx−1−σc dx.
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This is a convergent series with all non-negative terms, and hence by the monotone
convergence theorem we can interchange the integral and summation, to find

F2(s) =

∫ ∞
X

A(x)x−1−σc exp((1 + σc − s) log x) dx =

∫ ∞
X

A(x)x−s dx,

and so the integral must converge at s = σc − δ/2, which contradicts the definition
of σc. �

When discussing lower bounds for error terms, the following notation is useful.
We say that f = Ω±(g) if

lim sup
x→∞

f(x)

g(x)
≥ c > 0

and

lim inf
x→∞

f(x)

g(x)
≤ −c < 0,

for some absolute constant c > 0. That is, not only does f(x) exceed (some constant
multiple of) g(x) infinitely often, but it does so both positively and negatively.

Theorem 12. If σ0 is the supremum of the real parts of the zeros of ζ(s) then, for
any σ1 < σ0,

ψ(x) = x+ Ω±(xσ1).

If there is a zero ρ with <ρ = σ0, then

ψ(x) = x+ Ω±(xσ0).

Proof. We can certainly assume that σ1 > 0. We will prove the Ω+ statement;
the Ω− statement is an identical proof but with the signs reversed. Suppose for a
contradiction that ψ(x) − x 6= Ω+(xσ1). This means by definition that for every
c > 0 there exists some X = X(c) such that if x ≥ X then ψ(x) − x ≤ cxσ1 . For
this part of the proof any finite value of c will work just as well.

We will consider the function

F (s) =

∫ ∞
1

(cxσ1 − ψ(x) + x)x−s−1 dx.

Note that since the integrand is trivially O(x−σ) (where we write σ for the real part
of s as usual) this integral converges absolutely in the half-plane σ > 1, and the
integrand is non-negative eventually, so the conditions of Lemma 28 are satisfied.

In the half-plane σ > 1 then we can calculate that

F (s) =
c

s− σ1
+
ζ ′(s)

sζ(s)
+

1

s− 1
.

This has a pole at s = σ1, but is analytic for real s > σ1 – there are no zeros of ζ(s)
on the real line s > σ1 > 0 and the pole of 1/(s − 1) is cancelled out by the pole
of ζ(s) at s = 1. It follows by Lemma 28, as discussed after the statement of that
lemma, that there are no poles of F (s) for any s with σ > σ1. This contradicts the
choice of σ1, however, since there is a zero of ζ(s) with ρ = σ′+ it for some σ′ > σ1,
which will be a pole of F (s).

For the second, stronger, conclusion, we need to argue a little more carefully.
Suppose that there is a zero ρ = σ0 + it. Consider instead

F (s)+
eiθF (s+ it) + e−iθF (s− it)

2
=

∫ ∞
1

(cxσ0 − ψ(x) + x) (1+cos(θ−t log x))x−s−1 dx.
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The coefficients here are still non-negative real numbers. The left-hand side has a
pole at s = σ0 with residue

c+
meiθ/ρ+me−iθ/ρ

2
,

where m is the multiplicity of the zero ρ. We have freedom to choose θ to be
whatever we like, in particular so that this expression is c−m/ |ρ|. The lim inf of
the right-hand side is > −∞ as s approaches σ0 from the right along the real axis.
We must therefore have

c− m

|ρ|
≥ 0,

and hence c ≥ m/ |ρ|. In particular we have a contradiction if we choose c < m/ |ρ|,
which establishes the Ω+ aspect of the theorem. For Ω− we use the same argument
with signs reversed, so that we start with

F (s) =

∫ ∞
1

(−cxσ0 + ψ(x)− x)x−s−1 ds,

and so on. �

We can now rigorously prove the following equivalence of the Riemann hypoth-
esis.

Corollary 5. The Riemann hypothesis is equivalent to the statement that

ψ(x) = x+Oε

(
x1/2+ε

)
for every ε > 0.

Proof. We have already seen that assuming the Riemann hypothesis the error bound
O(x1/2(log x)2) is possible. Assume then that the Riemann hypothesis is false, and
let ρ be a zero with real part 1/2 < σ < 1 (note that such must exist by the
functional equation). If we now choose ε > 0 such that take some 1/2 + 2ε < σ
then Theorem 12 shows

ψ(x) = x+ Ω±(x1/2+2ε),

which would contradict ψ(x) = x+Oε(x
1/2+ε) for large enough x. �



CHAPTER 5

Zero density results

The dream of analytic number theorists is, of course, to prove the Riemann
hypothesis. We have already seen the close connection between the primes and the
zeros of ζ(s). In the absence of proving the Riemann hypothesis itself, we instead
to aim to prove weaker results about the distribution of zeros:

(1) Zero-free regions, that is, half-planes of the shape σ > 1−f(t) in which there
are no zeros at all. In this course we have proved this for f(t) � 1/ log t.
The best known bound is due to Korobov and Vinogradov, which allows
for some f(t)� 1/(log t)2/3(log log t)1/3.

(2) More precise estimates of how many zeros are in the critical strip 0 ≤ σ ≤ 1,
perhaps without knowledge of how their real parts are distributed. In
this course we have shown that the number of zeros up to height T is
asymptotically 1

2πT log T .
(3) Some estimates on how many zeros are on the critical line σ = 1/2. It

was first proved by Hardy that there are infinitely many zeros on this line
(an alternative proof is sketched on the third examples sheet). If we let
N0(T ) be the number of zeros on the line σ = 1/2 up to height T then one
weak form of the Riemann hypothesis would be N0(T ) ∼ 1

2πT log T (that
is, ‘100% of the zeros are on the critical line’).

One of the great achievements of 20th century analytic number theory is
showing that a positive proportion of zeros lie on the critical line – that is,
that N0(T )� T log T . This was first established by Selberg, then improved
by Levinson (who showed that at least 1

3 of all zeros are on the critical line)
then by Conrey. The best result so far is due to Bui-Conrey-Young who in
2011 showed that over 41% of the zeros are on the critical line.

(4) Finally, we come to zero density estimates, which are the focus of this final
chapter of the course. In this we stop trying to show that there aren’t any
zeros with σ > 1/2 and just try to show that least there aren’t too many.
For example, we will prove an estimate, due to Ingham, that if N(σ, T )
counts the number of zeros with real part ≥ σ and imaginary part at most
T , then

N(σ, T )� T 3(1−σ)(log T )O(1).

Of course, this is trivial for σ ≤ 2/3 as stated, but for example, shows
that there are at most O(T 3/4+ε) many zeros with real part ≥ 3/4, a tiny
proportion of the total number of � T log T zeros.

43
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14. Approximate functional equation

We begin by proving a very useful tool in deeper study of the zeta function.
Recall that the functional equation states that

ζ(s) = χ(s)ζ(1− s)

where

χ(s) = 2sπs−1 sin(πs/2)Γ(1− s).

In particular, since for σ > 1 the zeta function is given by a Dirichlet series, it
states that

ζ(s) =
∑
n

1

ns
for σ > 1

and

ζ(s) = χ(s)
∑
n

1

n1−s for σ < 0.

These make study of the zeta function in either region quite straightforward. The
critical strip 0 ≤ σ ≤ 1 is much more mysterious. We might hope that perhaps one
can ‘interpolate’ these two identities, and replace them with finite sums with some
small error term. This is indeed possible, as first shown by Hardy and Littlewood.4

Theorem 13. Whenever 0 ≤ σ ≤ 1

ζ(s) =
∑
n≤x

1

ns
+ χ(s)

∑
n≤y

1

n1−s +O

(
x−σ + |t|−

1
2 x1−σ

)
.

for any x, y ≥ 1/2 such that xy = t/2π.

Proof. Recall that in our second method of proving the functional equation we first
established the identity

ζ(s) =
1

Γ(s)

∫ ∞
0

xs−1

ex − 1
dx

for σ > 1, which followed from

Γ(s)

ns
=

1

ns

∫ ∞
0

ts−1e−t dt =

∫ ∞
0

xs−1e−nx dx

and then summing over n. If instead we summed over just those n > m then the
same proof gives the identity

ζ(s) =
∑
n≤m

1

ns
+

1

Γ(s)

∫ ∞
0

xs−1e−mx

ex − 1
dx.

We then transformed this to

ζ(s) =
e−iπs

2πi
Γ(1− s)

∫
C

zs−1

ez − 1
dz

4Although it was later discovered by Siegel that actually Riemann was well-aware of this
equation, and used it extensively in private, unpublished, calculations.
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where the contour goes from positive infinity, circles the origin, and returns to
infinity, where zs−1 is defined as exp((s − 1) log z) with the logarithm real at the
beginning of the contour. Again, the same argument yields

ζ(s) =
∑
n≤m

1

ns
+
e−iπs

2πi
Γ(1− s)

∫
C

zs−1e−mz

ez − 1
dz,

and this expression now holds for all s except positive integers.
Without loss of generality let t > 0 and xy = t/2π. We first claim that it suffices

to prove the approximate functional equation in the case the x ≤ y. For suppose
that instead y < x. We know then that

ζ(1− s) =
∑
n≤y

1

n1−s + χ(1− s)
∑
n≤x

1

ns
+O

(
yσ−1

)
.

By the functional equation:

ζ(s) = χ(s)ζ(1− s)

= χ(s)

∑
n≤y

1

n1−s + χ(1− s)
∑
n≤x

1

ns
+O(yσ−1)

 .

Since χ(s)χ(1 − s) = 1 and |χ(s)| � t
1
2−σ the result follows. We will therefore

assume that x ≤ y in the rest of the proof.
We move the contour C to one consisting of four straight lines as depicted in

Figure 14, where the turning points are at

P1 = πy + i3πy

P2 = −πy + iπy

P3 = −πy + iπ(2byc+ 1).

Since y is not an integer this contour does not cross any poles of the integrand, and
the poles that are now inside the contour are at ±2iπ, . . . ,±2iπbyc. The residues
from ±2πin are together

(2nπi)s−1 + (−2nπi)s−1 = (2nπ)s−1eiπ(s−1)2 cos(π(s− 1)/2)

= −2(2nπ)s−1eiπs sin(πs/2).

It follows that

ζ(s) =
∑
n≤x

1

ns
+ e−iπsΓ(1− s)

∑
n≤y

2(2nπ)s−1eiπs sin(πs/2)

+O(e−iπsΓ(1− s)I)

where I is the sum of the integrals over C1, C2, C3, C4. Simplifying the second
summand gives

ζ(s) =
∑
n≤x

1

ns
+ 2sπs−1 sin(πs/2)Γ(1− s)

∑
n≤y

1

n1−s +O(e−iπsΓ(1− s)I).

By Stirling’s formula |Γ(1− s)| � t
1
2−σe−

π
2 t and hence

e−iπsΓ(1− s)� t
1
2−σe

π
2 t.
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<

= C1

C2

C3

C4

P1

P2

P3

Figure 5. The contour used in the proof of the approximate func-
tional equation. The poles at ±2πi, . . . ,±2πibyc are marked in red,
and the previous contour C is marked in blue.

It remains to show that the contribution from each integral is

� e−
π
2 t

(
tσ−

1
2x−σ + yσ−1

)
.

Let z = u+ iv = ρeiθ for 0 < θ < 2π, so that∣∣zs−1
∣∣ = ρσ−1e−tθ.

In particular, by the triangle inequality, we can bound the integral over Ci by

≤
∫
Ci

ρσ−1e−tθe−mu

|ez − 1|
dz.

On C4 we see that θ ≥ 5
4π and ρ � y, and furthermore |ez − 1| � 1. Hence the

integral over C4 is

� yσ−1e−
5
4πt

∫ ∞
−πy

e−mu du� emπy−
5
4πt � yσ−1et(

1
2−

5
4π)

which is good enough since 5
4π −

1
2 ≥

π
2 . On C3, we see that θ ≥ 3

4π, and still
|ez − 1| � 1, so the integral over C3 is

� yσe−t
5
4π+πym � yσet(

1
2−

5
4π) � yσ−1e−

π
2 t

since y � t.
[The estimations of the integral over C1 and C2 are a bit more tricky, and were

not covered in lectures, so they do not form part of the examinable content of the
course. Some more details are included here for those interested.]

On C1 we now use |ez − 1| � eu, and so the integral over C1 is

� yσ−1

∫ ∞
πy

e−tθe−(m+1)u du,
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where θ is the argument of u + 3πiy, that is, θ = tan−1(3πy/u). We divide the
integral into the integral over (πy, 2π2y) and (2π2y,∞). Since m+ 1 ≥ x = t/2πy
the first integral is

�
∫ 2π2y

πy

e
−t(θ+ u

2πy )
du.

Since
d

du

(
tan−1 3πy

u
+

u

2πy

)
= − 3πy

u2 + 9π2y2
+

1

2πy
> 0

we always have θ+ u
2πy is at least its value at u = πy, where it is c1 = tan−1(3)+ 1

2 ≈
1.74, and therefore this first integral is

� ye−c1t.

The second integral is

�
∫ ∞

2π2y

e−xu du� e−πt.

Overall then the contribution from C1 is

yσe−c1t + yσ−1e−πt � yσ−1e−
π
2 t

as required, since c1 > π/2. Finally, we have to deal with C2. Here z = 2πiy+λeπi/4

where λ ∈ R and |λ| ≤
√

2πy. Expanding out the log(2πy + λe−πi/4) gives∣∣zs−1
∣∣� yσ−1 exp

(
t

(
−π

2
+

λ

23/2πy
− λ2

8π2y2
+O(λ3/y3)

))
.

It follows that the integral over C2 is

� yσ−1e−
π
2 t

∫
C4

e−f(z)t−mu

|ez − 1|
dz

where

f(z) = θ − λ

23/2πy
+

λ2

8π2y2
+O(λ3/y3).

If |u| > π/2 then
∣∣e(x−m)u

∣∣ � |ez − 1| and e−xu = e−λt/2
3/2πy, and therefore this

part of the integral contributes

� yσ−1e−
π
2

∫ πy
√

2

−πy
√

2

e
− λ2

8π2y2 t+O(λ3t/y3)
dλ� yσt−1/2e−

π
2 t.

A similar estimate applies if |u| ≤ π/2 and |ez − 1| � 1. Finally, if the contour
goes through somewhere close to z = 2πibyc then move it to an arc of the circle

centred at 2πibyc with radius π/2. On this circle
∣∣zs−1e−mu

∣∣� yσ−1e−
π
2 t, and the

proof is complete. �

15. Mean value estimates

To show that an analytic function does not have too many zeros in a given region,
it is important to know that it doesn’t get too large. This apparently paradoxical
requirement has already appeared in Jensen’s inequality, which essentially says that
if |f(s)| ≤ M in a disc then there are O(logM) many zeros in this disc (which is
less magical once one recalls that if a polynomial satisfies |P (z)| � zK then it has
at most K zeros).
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We want to count zeros not in a disc, but in a rectangle. Unfortunately there
is nothing quite so clean as Jensen’s inequality available here – a different tool is
required, which we will come to in the next section. We will still need to show that
our function (in this case ζ(s)) does not grow too quickly. The information we will

use is an upper bound on the average value of |ζ|2 (or |ζ|4) over the line 1
2 + it.

First we give a couple of examples of mean value estimates for finite Dirichlet
polynomials (the approximate functional equation which enable us to apply these
to the zeta function).

Lemma 29. For any an ∈ C∫ T

0

∣∣∣∣∣∣
∑
n≤x

ann
it

∣∣∣∣∣∣
2

dt = (T +O(x))
∑
n≤x

|an|2 .

Proof. The temptation is to immediately expand out the square and integrate, but
this will not be sufficient. Instead, we first use the non-negativity of the integrand
to note that ∫ T

0

∣∣∣∣∣∣
∑
n≤x

ann
it

∣∣∣∣∣∣
2

dt ≤
∫
f(t)

∣∣∣∣∣∣
∑
n≤x

ann
it

∣∣∣∣∣∣
2

dt

for any integrable function f : R → [0,∞) such that f(t) = 1 for 0 < t ≤ T . Now
we expand the square, to get ∑

n,m≤x

anamF (m/n)

where

F (u) =

∫
f(t)uit dt.

It is desirable then to choose f(u) to have reasonable Fourier properties. For
example, in this proof, we will choose to f to be the piecewise linear function
which is 1 on (0, T ], 0 for t ≤ −x or t > T + x, and otherwise decays linearly. It
follows that F (1) = T + x and F (u) � x−1(log u)−2 if u 6= 1, which follows after
integrating by parts. Furthermore, if n ≤ m ≤ x, say, then

log(m/n) = log

(
1 +

m− n
n

)
� m− n

n
� m− n

x
.

It follows that when n 6= m,

F (m/n)� 1

x
(logm/n)−2 � x

(m− n)2
.

Furthermore, ∑
1≤n 6=m≤x

|aman| (m− n)−2 �
∑
n≤x

|an|2

since |aman| � |am|2 + |an|2. It follows that∫ T

0

∣∣∣∣∣∣
∑
n≤x

ann
it

∣∣∣∣∣∣
2

dt ≤ (T +O(x))
∑
n≤x

|an|2 .

Similarly we can derive the same lower bound, by choosing f to be 0 outside (0, T ]
and triangular inside this interval with a peak at 1. �
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Combining this lemma with the approximate functional equation we can prove
the following.

Theorem 14. ∫ T

T/2

∣∣ζ( 1
2 + it)

∣∣2 dt ∼ T

2
log T.

Proof. We apply the approximate functional equation with x = T/(log T )1/2, σ =
1/2 and y = t/2πx for some t ≥ 4, say. This will be valid provided x, y ≥ 1/2,
which is true (for large T ) since we will only apply it to the region t ∈ [T/2, T ].
Note that by Stirling’s formula∣∣χ( 1

2 + it)
∣∣� ∣∣sin(π( 1

4 + i t2 ))Γ( 1
2 − it)

∣∣� 1

for any |t| ≥ 4. It follows by the approximate functional equation that when
s = 1

2 + it and t ∈ [T/2, T ]

ζ(s) =
∑
n≤x

1

ns
+O

(
(log T )1/4

)
.

It follows that, if Z =
∑
n≤x n

− 1
2−it, then∫ T

T/2

∣∣ζ( 1
2 + it)

∣∣2 dt =

∫ T

T/2

|Z|2 dt+O

T (log T )1/2 + T 1/2(log T )1/4

(∫ T

T/2

|Z|2 dt

)1/2
 .

We now note that ∫ T

0

∣∣∣∣∣∣
∑
n≤x

n−
1
2−it

∣∣∣∣∣∣
2

dt ∼ T log T.

Indeed, Lemma 29 applied with an = n−1/2 implies that this integral is

= (T +O(x))
∑
n≤x

1

n
= (T +O(x))(log x+O(1)) = (1 + o(1))T log T

as required. Similarly, we also get by another application of Lemma 29 that∫ T/2

0

∣∣∣∣∣∣
∑
n≤x

n−
1
2−it

∣∣∣∣∣∣
2

dt ∼ T

2
log T.

Subtracting these asymptotics shows that∫ T

T/2

|Z|2 dt ∼ T

2
log T,

and hence ∫ T

T/2

∣∣ζ( 1
2 + it)

∣∣2 dt ∼ T

2
log T

as required. �

By summing the upper bound part of this for T , T/2, T/4, and so on, we arrive
at the following upper bound.

Corollary 6. ∫ T

0

∣∣ζ( 1
2 + it)

∣∣2 dt� T log T.
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It is also reasonably straightforward to derive from this asymptotic for the inte-
gral over the interval [T/2, T ] an asymptotic for [0, T ], namely the expected∫ T

0

∣∣ζ( 1
2 + it)

∣∣2 dt ∼ T log T.

We will also need a stronger bound on the L4 moment of the zeta function. For
this we use the following mean value estimate.

Lemma 30. ∫ T

0

∣∣∣∣∣∣
∑
n≤x

ann
it

∣∣∣∣∣∣
4

dt� (T + x2)

∑
n≤x

|an|2 τ(n)

2

.

Proof. Expanding out the square we note that∑
n≤x

ann
it

2

=
∑

n,m≤x

anam(nm)it =
∑
k≤x2

bkk
it

where

bk =
∑

n,m≤x
nm=k

anam.

The claimed bound now follows from Lemma 29 applied to bk, since

∑
k≤x2

|bk|2 =
∑
k

∣∣∣∣∣∣
∑

n,m≤x

anam1nm=k

∣∣∣∣∣∣
2

=
∑

n1,n2,m1,m2≤x

an1
an2

am1
am2

1n1m1=n2m2

≤
∑

n,m≤x

|anam|2 τ(nm)

where we have used the fact that 2 |uv| ≤ |u|2 + |v|2 in the last inequality. The
stated bound follows from the fact that τ(nm) ≤ τ(n)τ(m), which can be proved
either directly or by noting that it suffices to check it for prime powers, when it
becomes the trivial inequality

1 + k1 + k2 ≤ (1 + k1)(1 + k2).

�

Theorem 15. ∫ T

0

∣∣ζ( 1
2 + it)

∣∣4 � T (log T )4.

There is a mistake in the following proof, which I have highlighted. As a result
the proof of this result is NOT EXAMINABLE (although the statement is). This
result can be proved directly, using the tools we have developed, but to keep things
fair I will not assume knowledge of this variant proof.
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Proof. As above, by summing the bound over T/2k for varying k, it suffices to show
that ∫ T

T/2

∣∣ζ( 1
2 + it)

∣∣4 � T (log T )4.

We once again apply the approximate functional equation, but now with x = y =
(t/2π)1/2, so that when s = 1

2 + it with t ∈ [T/2, T ],

ζ(s) =
∑
n≤x

1

ns
+ χ(s)

∑
n≤x

1

n1−s +O(T−1/4)

�

∣∣∣∣∣∣
∑
n≤x

n−
1
2 +it

∣∣∣∣∣∣+O(T−1/4).

It therefore suffices to show that

(2)

∫ T

T/2

∣∣∣∣∣∣
∑
n≤x

n−1/2+it

∣∣∣∣∣∣
4

dt� T (log T )4

where x = (t/2π)1/2. We use Corollary 30 with an = n−1/2. This is not valid as
we have stated Corollary 30, since the range of summation x must be independent
of the variable t. The correct way is to expand out the integral in (2) and bound it
directly. It gives the upper bound

� T

 ∑
n≤T 1/2

τ(n)

n

2

.

Using
∑
n≤x τ(n) = x log x+O(x) and partial summation implies that∑

n≤x

τ(n)

n
� (log x)2

and the proof is complete. Note how important it was that the length of the
sum here was only O(T 1/2) – without the approximate functional equation we’d
have to take a sum of length O(T ) and then the final bound would look more like
O(T 2+ε). �

This upper bound was proved by Hardy and Littlewood. By refining their
method Ingham showed that in fact∫ T

0

∣∣ζ( 1
2 + it)

∣∣4 dt ∼ 1
2π2T (log T )4.

It is conjectured that for all k ≥ 0∫ T

0

∣∣ζ( 1
2 + it)

∣∣2k dt ∼ ckT (log T )k
2

for some constant ck > 0. The cases k = 0, 1, 2 are the only ones for which an
asymptotic is known, although lower bounds of the correct order of magnitude
were proved by Ramachandra for all k. Upper bounds for k ≥ 3 remain an open
problem, even ones of the shape O(T 1+ε).

For a long time it was a mystery what the correct conjecture even was - remark-
ably, in 1998 Keating and Snaith found that the characteristic polynomial of a large
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random matrix (for a given value of random) experimentally provides a very close
model to the Riemann zeta function. Using this heuristic, they conjectured that

ck =

k−1∏
j=0

j!

(j + k)!

∏
p

((
1− 1

p

)(k−1)2 k−1∑
r=0

(
k − 1

r

)2

p−r

)
,

which so far looks like the right guess. One of the most interesting aspects to
the recent story of the zeta function has been this nascent connection to random
matrices, which is still being explored.

We will prove one further mean-value estimate for the zeta function, now for on
vertical lines other than σ = 1/2.

Theorem 16. For any 1
2 < σ ≤ 1∫ T

0

|ζ(σ + it)|2 dt� T.

Proof. Again, we will prove the stated upper bound for the integral over [T/2, T ],
and the full bound follows summing over T/2k. We apply the approximate func-
tional equation with x = T/10 and y = t/2πx. The approximate functional equa-
tion gives that, for s = σ + it with t ∈ [T/2, T ]

ζ(s) =
∑
n≤x

1

ns
+O (1) .

It follows that ∫ T

T/2

|ζ(σ + it)|2 dt =

∫ T

T/2

∣∣∣∣∣∣
∑
n≤x

n−σ−it

∣∣∣∣∣∣
2

dt+O(T ).

Finally, Lemma 29 applied with an = n−σ implies that this integral is

� T
∑
n≤x

1

n2σ
�σ T

as required. �
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16. From mean values to counting zeros

The following useful lemma is a way of counting zeros inside rectangles – it can
be seen as doing for rectangles what Jensen’s inequality does for circles.

We will need to deal with the logarithms of complex-valued functions again, so
we briefly recap what we mean by this. If C is a rectangular contour such that
σ0 ≤ <(s) ≤ σ1 and 0 ≤ =(s) ≤ T , say, on which f(s) does not vanish, then we
define log f(s) by choosing some value on the line σ = σ1 and otherwise define it
by

log f(σ + it) = log f(σ1 + it) +

∫ σ1

σ

f ′

f
(u+ it) du.

This is well-defined once we have chosen a value for log f(σ1 + it), which in turn is
well-defined up to integer multiples of 2πi. (If there is a zero of f on the horizontal
line between σ + it and σ1 + it then take the limit as we approach σ + it from
below.)

Lemma 31 (Littlewood). Let f(s) be analytic and non-zero on a rectangular con-
tour C with vertices at σ1, σ0, σ0 + iT, σ1 + iT , for some σ0 < σ1. Suppose that f
has no poles inside C. Then∑

ρ

D(ρ) = < 1

2πi

∫
C

log f(s) ds

=

∫ T

0

log |f(σ0 + it)| dt−
∫ T

0

log |f(σ1 + it)| dt

+

∫ σ1

σ0

arg f(σ + iT ) dσ −
∫ σ1

σ0

arg f(σ) dσ,

where the sum is over zeros of ρ inside C and D(ρ) denotes the horitzontal distance
from the left-hand edge.

Proof. The idea is to transform C into a similar contour but where we have ‘cut
out’ branch cuts leading to each of the zeros inside the rectangle. We walk around
C until the left-hand edge, stop at each height where there is a zero, move, circle
with radius ε > 0, then return.

The integral of log f(s) over the new contour is zero, since log f(s) is analytic
and single-valued inside and on C ′.

The integral of the left side of the rectangle, of width 2ε, goes to 0 as ε → 0,
since f is holomorphic and non-zero in some neighbourhood of that line.

The integral around the circle is∫
log f(ρ+ reiθ)ireiθ dθ.

If ρ is a zero of order k then f(ρ+z) = zkh(z) where h is analytic in a neighbourhood
of 0 and non-vanishing at 0. Taking logarithms gives∫

k(log(r) + iθ)ireiθ dθ +

∫
log h(z)ireiθ dθ.

This goes to 0 as r → 0.
The other two integrals are, in the cut for ρ = β + iγ,∫ β−r

σ0

log f(σ ± i(γ ± ε)) dσ,
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taken in different directions. The only difference is the change in argument, which
is 2π, and hence the difference between the two is 2πi(β − σ0). It follows that∫

C

log f(s) ds = 2πi
∑
ρ

D(ρ).

�

In most applications, the first summand is the significant one, and the rest are
smaller error terms. To bound it, we generally use the following consequence of
convexity: if g : [0, T ]→ [0,∞) then

1

T

∫ T

0

log g(t) dt ≤ 1

2
log

(∫ T

0

g(t)2 dt

)
.

Theorem 17 (Bohr-Landau). If 1
2 < σ < 1 then

N(σ, T )� T

where the implied constant depends only on σ.

In particular, one could view this as saying ‘almost all zeros of ζ(s) lie arbitrarily
close to σ = 1/2’.

Proof. Let σ = 1
2 + 2ε. We apply Littlewood’s lemma to the rectangle with sides

at 1
2 + ε and 2 (we may have to adjust the value slightly to make sure there are no

zeros on the line 1
2 + ε itself). Note that∑

ρ∈C
D(ρ) ≥ εN(σ, T )� N(σ, T ).

Since we have shown that
∫ T

0
|ζ(σ0 + it)|2 dt �σ0 T , it follows by convexity that

the first term in Littlewood’s lemma is also � T . The contribution of the second
is also O(T ). The contribution of the third and fourth is O(log T ), by the same
argument used for S(T ) = arg ζ( 1

2 + iT ). Note that whenever the argument varies
by more than π it must be because it passes some value with < = 0. �

17. Zero density results and gaps between primes

A zero density result is an estimate which gives upper bounds for N(σ, T ) for all
1/2 ≤ σ ≤ 1 – ideally, one which decays rapidly as σ → 1. To this end, we say that
we have a zero density result of strength A if we have the upper bound

N(σ, T )�ε T
A(1−σ)(log T )B

for some absolute constant B > 0. Note that the Bohr-Landau upper bound
N(σ, T )� T (for σ > 1/2) is not of this form, so at the moment we don’t have any
zero estimate at all.

Assuming the Riemann Hypothesis, coupled with the fact that N(T )� T log T ,
we should expect that a zero density result of strength 2 is true. This is actually
much weaker than the Riemann Hypothesis, since it allows for there being many
zeros off the critical line, as long as there aren’t too many. It is often known as
the‘Density Conjecture’.
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Conjecture 1 (Density Conjecture). For all 1/2 ≤ σ ≤ 1

N(σ, T )�ε T
2(1−σ)(log T )B

for some B > 0.

For many purposes, the Density Conjecture is a fine substitute for the Riemann
Hypothesis. For example, we have the following relationship between zero density
results and gaps between primes.

Theorem 18. Suppose we have a zero density result of strength A. Then, for any
ε > 0, if X is sufficiently large, then for all x ≥ X, there is a prime in the interval
[x, x+ x1− 1

A+ε].

In particular, the Density Conjecture implies that there are primes between x and
x + x1/2+ε. For comparison, this also follows easily from the Riemann Hypothesis
(in the form ψ(x) = x + O(x1/2+ε)). The best known unconditional result is due
to Baker, Harman, and Pintz, and replaces the x1/2+ε with x0.525. Even assuming
the Density Conjecture or Riemann Hypothesis, these results fall far short of the
truth, since we expect that in fact there should always be primes in the interval
[x, x+ (log x)2+ε], which is conjectured on probabilistic grounds.

In the next section we will prove Ingham’s zero density result, that there is a
zero density result of strength 3, thus obtaining primes in intervals of length x2/3+ε.
The best known zero density result to date, combining work of Ingham and Huxley,
replaces 3 by 12/5.

We conclude this section by proving Theorem 18, for which we will require a
stronger zero-free region than we have proved in this course. The following will
suffice. (The proof of this improved zero-free region is non-examinable.)

Theorem 19 (Vinogradov-Korobov). If ρ = σ + it is a zero of ζ(s) then

σ ≤ 1− c

(log |t|)3/4

for some absolute constant c > 0.

Proof of Theorem 18. We use the explicit formula, applied with T ≤ x, say, to
obtain

ψ(x) = x−
∑
ρ

|γ|≤T

xρ

ρ
+O

( x
T

(log x)2
)
,

valid whenever x is of the form n+ 1
2 when n is an integer, say. Let x1/2(log x)3 ≤

y ≤ x be chosen later, and consider the difference ψ(x+ y)− ψ(x). If we can show
this is � y, say, for large enough x, then we can deduce that there is a prime in
the interval [x, x+ y], since if not the only contribution to

ψ(x+ y)− ψ(x) =
∑

x<n≤x+y

Λ(n)

can come from log p for prime powers pk ∈ [x, x+y] with k ≥ 2, which can contribute
at most O(x1/2(log x)2).

By the explicit formula, then, (without loss of generality for the purposes of
locating primes we can assume that both x and y are of the form n+ 1/2)

ψ(x+ y)− ψ(x) = y −
∑
ρ

|γ|≤T

(x+ y)ρ − xρ

ρ
+O(

x

T
(log x)2).
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We will show that the second term is o(y), for a suitable choice of y, which will
conclude the proof.

We write ∣∣∣∣ (x+ y)ρ − xρ

ρ

∣∣∣∣ =

∣∣∣∣∫ x+y

x

uρ−1 du

∣∣∣∣ ≤ yxβ−1,

where ρ = β + iγ. It follows that

ψ(x+ y)− ψ(x) = y +O

y ∑
ρ

|γ|≤x

xβ−1 +
x

T
(log x)2

 .

We divide the zeros ρ as follows. Let I0 = {ρ : β ≤ 1/2}. For n ≥ 1 let

In =

{
ρ :

1

2
+
n− 1

log T
< β ≤ 1

2
+

n

log T

}
.

The contribution to the sum from I0 is at most x−1/2T log T . The contribution
from In is, by our assumed zero-density result,

�ε x
− 1

2 + n
log T TA( 1

2−
n

log T )(log T )B .

In total, then,

ψ(x+y)−ψ(x) = y+Oε

yx− 1
2

T 1+ε + T
A
2 (log T )B

∑
n≥1

(x/TA)n/ log T

+
x

T
(log x)2

 .

Since by our assumed zero-free region there are no zeros at all with β ≥ 1 −
c/(log T )3/4, we can discard sufficiently large n, and bound the sum over n by∫ 1

2−
c

(log T )3/4

0

( x

TA

)u
du�

( x

TA

) 1
2−

c

(log T )3/4 + 1.

We now choose T = x1/A−δ for some small δ > 0. It follows that the sum over n is
bounded above by

(x/TA)1/2e(−c′(log x)1/4)

for some c′ > 0, depending on δ. Putting this into the error term we see that

ψ(x+y)−ψ(x) = y+Oε

(
yx−

1
2 + 1

A+ε/A + y(log x)Be(−c′(log x)1/4) + x1− 1
A+δ(log x)2

)
.

We can now choose y = x1− 1
A+ε′ for any ε′ > 0, and see that provided we choose

δ > 0 sufficiently small and x (and thus y) sufficiently large, the error term is at
most y/2 in absolute value, and hence ψ(x + y) − ψ(x) ≥ y/2, and the proof is
complete. �

18. Ingham’s zero density result

[Since we did not manage to complete all lectures during normal term time, and
the ensuing disruption, this final section is non-examinable.]

We will finish the course by giving a proof of Ingham’s first zero density result
– which, as we have seen, in particular implies that there are primes in intervals of
length around x2/3 around all sufficiently large x.
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Theorem 20 (Ingham). For 1/2 ≤ σ ≤ 1

N(σ, T )� T (1+2σ)(1−σ)(log T )O(1).

In particular,

N(σ, T )�ε T
3(1−σ)(log T )O(1).

Proof. We use Littlewood’s lemma, but rather than to ζ(s), we apply it to a different
function. We will use one of the key insights in this area – that finite Dirichlet series
are easier to work with, and can be used to generate ‘approximations’ to ζ(s), that
fail whenever ζ(s) = 0.

Namely, recall that 1
ζ(s) =

∑
n
µ(n)
ns . In particular, when σ > 1, we know that

ζ(s)
∑
n
µ(n)
ns − 1 = 0. This fails for σ ≤ 1, but one may hope that it remains

approximately true if we replace the infinite Dirichlet series by a finite one. Namely,
consider

f(s) = ζ(s)
∑
n<X

µ(n)

ns
− 1,

where X is some fixed parameter to be optimised later. Provided we take X large
enough, we expect that f(s) ≈ 0 most of the time, and hopefully even continuing
into the critical strip σ ≤ 1, since there are no issues with convergence of the series
now that it is finite. When ζ(s) = 0, however, clearly f(s) = 1. Therefore, if we
can show that f(s) is small on average, this should lead to upper bounds on the
number of zeros of ζ(s).

To make this precise, we will apply Littlewood’s lemma to the function h(s) =
1− f(s)2. By construction f(s), and hence h(s), is an analytic function, with only
a possible pole at s = 1. Furthermore, if ζ(s) = 0 then h(s) = 0, so an upper bound
for Nh(σ, T ) will be an upper bound for N(σ, T ). The advantage is that we will be
able to obtain much better mean value estimates for h(s) than for ζ(s), because by
construction we expect h(s) ≈ 1 most of the time.

Fix some 1/2 ≤ σ0 ≤ 1, and apply Littlewood’s lemma to the rectangular contour
with corners at σ0 + iT1, 2 + iT1, σ0 + iT2, and 2 + iT2, where 3 < T1 < 4 and
T < T2 < T + 1 are both chosen so that there are no zeros on the horizontal lines.∑
ρ

D(ρ) =

∫ T2

T1

(log |h(σ0 + it|−log |h(2 + it)|) dt+

∫ 2

σ0

(arg h(u+iT2)−arg h(u+iT1)) du.

We can adjust σ by some tiny value to ensure there are no zeros on the contour itself
(note that we can assume σ > 1/2 since the estimate follows from N(T )� T log T
otherwise).

Let

aX(n) =
∑
d|n
d<X

µ(d),

so that when σ > 1

ζ(s)
∑
n<X

µ(n)

ns
=
∑
n

aX(n)

ns
= 1 +

∑
n≥X

aX(n)

ns
.

In particular, when σ > 1, we have the Dirichlet series representation

f(s) =
∑
n≥X

aX(n)

ns
.
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It follows that, when σ = 2,

|f(s)|2 ≤

∑
n≥X

τ(n)

n2

2

≤

∑
n≥X

1

n3/2

2

� 1

X
.

Since for 0 ≤ x ≤ 1/2 we have log(1 − x) ≥ −2x, say, in particular we see that

when σ = 2, we have − log |h| ≤ − log(1 − |f(s)|2) ≤ 2 |f(s)|2 � 1/X, and so the
contribution from the right vertical side is O(T/X).

We will now deal with the contribution from the horizontal edges. To this end,
note that

|arg h(u+ iT1)| � m

where m is the number of points on the segment u+ iT1 at which <h(s) = 0, since
the argument can’t vary by more than π on any of the m+ 1 divide the lines from
2 to 2 + iT1 to σ0 + iT1, since <h(s) 6= 0 on the vertical part, since by choosing

X large enough we can ensure that |f(s)|2 < 1/2, say, when σ = 2, and hence
<h(s) > 1/2.

We see that m is the number of zeros of the function

H(s) =
1

2
(h(s+ iT1) + h(s− iT1)) ,

which we can bound by Jensen’s inequality. Indeed, consider the disc centred at
2 with radius 7/4, say. The value of H(s) at the centre is <h(2 + iT1) > 1/2 as
above, and in this disc |h(s)| � (TX)O(1), and so the number of zeros, and hence
the argument, is � log(TX). Therefore the contribution from the horizontal edges
is O(log(TX)).

Using the fact that log |h| ≤ log(1 + |f(s)|2) ≤ |f(s)|2 we have shown that

Nh(σ, T )�
∫ T

0

|f(σ + iT )|2 +O( TX + log(TX)).

We now show that, uniformly for 1/2 ≤ σ ≤ 1, and for any 2 ≤ X ≤ T ,∫ T

0

|f(σ + it)|2 dt� (T 2(1−σ) + T 1−σX2(1−σ) + TX1−2σ)(log T )O(1).

The result follows, taking X = Tσ.
For this estimate we need to introduce another parameter Y , so let

f1(s) =
∑

X≤n<Y

aX(n)

ns
and f2(s) = f(s)− f1(s).

Since it is a finite Dirichlet series, an appeal to Lemma 29 implies∫ T

0

|f1(σ + it)|2 dt� (T + Y )
∑

X≤n<Y

|aX(n)|2

n2σ
� (T + Y )X1−2σ(log T )O(1),

where we have used |aX(n)| ≤ τ(n) and the elementary bound∑
n≤x

τ(n)2 � x(log x)O(1),

combined with partial summation. Choosing Y = T implies this is a good enough
upper bound. It suffices now to give an upper bound for the mean value of f2.
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We will do this by first finding an upper bound on the line σ = 1 + δ, then on
the line σ = 1/2, and interpolating between them. When σ = 1 + δ we can use the

fact that f2(s) =
∑
n≥Y

aX(n)
ns to see that∫ T

0

|f2(1 + δ + it)|2 dt =
∑

n,m≥Y

aX(n)aX(m)

(nm)1+δ

∫ T

0

(m/n)it dt.

The diagonal terms n = m contribute (using the trivial bound |aX(n)| ≤ τ(n))

≤ T
∑
n≥Y

τ(n)2

n2+2δ
� (log T )O(1) T

Y
.

The non-diagonal parts contribute, using the bound 1/ log(n/m) ≤ 1 + m
n−m for

n > m, something on the order of

∑
n>m≥Y

τ(m)τ(n)

(nm)1+δ log(n/m)
�

(∑
n

τ(n)

n1+δ

)2

+
∑

n>m≥Y

τ(n)τ(m)

n1+δmδ(n−m)

� ζ(1 + δ)4 +
∑
m≥Y

τ(m)

mδ

∑
m<n≤2m

τ(n)

n1+δ(n−m)

+
∑
m≥Y

τ(m)

mδ

∑
n>2m

τ(n)

n2+δ

� δ−4 +
∑
m≥Y

τ(m)

m2+δ

∑
m<n≤2m

τ(n)

n−m

� δ−4.

It follows that ∫ T

0

|f2(1 + δ + it)|2 dt� T

Y
(log T )O(1) + δ−4.

When σ = 1/2 we use f2(s) = ζ(s)
∑
n<X

µ(n)
ns − 1 − f1(s). If we let M(s) =∑

n<X
µ(n)
ns then the first part is∫ T

0

∣∣ζ( 1
2 + it)M( 1

2 + it)
∣∣2 dt ≤

(∫ T

0

∣∣ζ( 1
2 + it)

∣∣4 dt

)1/2(∫ T

0

∣∣M( 1
2 + it)

∣∣4 dt

)1/2

,

by the Cauchy-Schwarz inequality. The first factor is � T (log T )O(1) by Theo-
rem 15, and the second is the 4th power of a finite Dirichlet series, and hence
Lemma 30 implies that it is � (T + X2)(log T )O(1). Similarly, the contribution
from f1(s) can be bounded since f1(s) is a finite Dirichlet series, and hence yields
� (T + Y )(log T )O(1) as before. In total, then, the mean value over σ = 1/2 is∫ T

0

∣∣f2( 1
2 + it)

∣∣2 dt� (T + T 1/2X)(log T )O(1).

We have shown that∫ T

0

∣∣∣f2(1 + 1
log T + it)

∣∣∣2 dt� (log T )O(1)
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and ∫ T

0

∣∣f2( 1
2 + it)

∣∣2 dt� (T + T 1/2X)(log T )O(1).

It remains to ‘interpolate’ between the vertical lines at 1/2 and 1 + 1/ log T to
obtain the required bound, uniformly for 1/2 ≤ σ ≤ 1, that∫ T

0

|f2(σ + it)|2 dt� (T + T 1/2X)2(1−σ)(log T )O(1).

This is a straightforward consequence of the Phragmén-Lindelöf principle from com-
plex analysis, which we leave as an exercise for those students with background in
complex analysis. �


