Analytic Number Theory Sheet 2

Lent Term 2020

1. For a Dirichlet series $F(s) = \sum \frac{a_n}{n^s}$ let σ_c have the property that F(s) converges for all s with $\sigma > \sigma_c$ and for no s with $\sigma < \sigma_c$. Let σ_a have the property that F(s) converges absolutely if $\sigma > \sigma_a$ and does not converge absolutely if $\sigma < \sigma_a$. Show that

$$\sigma_c \le \sigma_a \le \sigma_c + 1$$
.

Give examples to show that both $\sigma_c = \sigma_a$ and $\sigma_c + 1 = \sigma_a$ are possible.

2. For fixed $\sigma \in \mathbb{R}$ let $\nu(\sigma)$ denote the infimum of those exponents ν such that $\zeta(\sigma + it) \ll |t|^{\nu}$ for all $|t| \geq 4$. (The Lindelöf hypothesis is the conjecture that $\nu(1/2) = 0$.)

- (a) Show that $\nu(\sigma) = 0$ for $\sigma \ge 1$.
- (b) Show that $\nu(\sigma) \leq 1 \sigma$ for $0 < \sigma \leq 1$.
- (c) Show that $\nu(\sigma) = \nu(1-\sigma) + 1/2 \sigma$, and in particular $\nu(\sigma) = 1/2 \sigma$ for $\sigma \le 0$. (You may use Stirling's approximation, that $|\Gamma(s)| \approx t^{\sigma 1/2} e^{-\pi t/2}$ as $t \to \infty$ for σ uniformly bounded.)
- 3. Show that

$$\sum_{\substack{a,b \ge 1 \\ (a,b)=1}} \frac{1}{a^2 b^2} = \frac{5}{2}.$$

Hint: Use the fact that $\sum_{d|n} \mu(d) = 0$ if n > 1.

4. Sketch a proof that if $s \neq 1$ and $\zeta(s) \neq 0$ then, if x is not an integer,

$$\sum_{n \le x} \frac{\Lambda(n)}{n^s} = \frac{x^{1-s}}{1-s} - \lim_{T \to \infty} \sum_{\substack{\rho \\ |\gamma| \le T}} \frac{x^{\rho-s}}{\rho-s} - \frac{\zeta'}{\zeta}(s) + \sum_{k=1}^{\infty} \frac{x^{-2k-s}}{2k+s}.$$

5. (a) Using elementary methods show that

$$\sum_{n \le x} \Lambda(n) \left\lfloor \frac{x}{n} \right\rfloor = x \log x + O(x).$$

(b) Deduce that

$$\sum_{n \le x} \frac{\Lambda(n)}{n} \sim \log x.$$

Compare this to the result of Question 4 as $s \to 1$.

6. (a) Show that if $\sigma > 0$ and $k \ge 1$ then

$$\frac{1}{2\pi i} \int_{\sigma - i\infty}^{\sigma + i\infty} \frac{y^s}{s^{k+1}} \, \mathrm{d}s = \begin{cases} \frac{(\log y)^k}{k!} & \text{if } y \ge 1 \text{ and} \\ 0 & \text{if } y \le 1. \end{cases}$$

(b) Give an explicit formula for any $k \geq 1$ for

$$\sum_{n \le x} \Lambda(n) \left(\log \frac{x}{n} \right)^k,$$

1

sketching a proof of the formula you give.