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Lent Term 2020

1. Using the fact that ζ(s) has no zeros in the region σ > 1− c/ log |t| and |t| ≥ 2 prove that, all in this
same region,

(a)
ζ ′

ζ
(s)� log |t|

Hint: Use Dirichlet series to handle σ > 1 + 1/ log |t| and apply the formula for ζ′

ζ in terms of

the zeros of ζ(s) to handle the remaining region.

(b)
|log ζ(s)| ≤ log log |t|+O(1),

(c)
1

ζ(s)
� log |t| .

2. Show that if |t| ≥ 4 then the number of zeros of ζ(s) in the disc of radius r around 1 + it is O(r log |t|)
for all r ≤ 3/4. Hint: Again, use the formula for ζ′

ζ in terms of its zeros and take real parts at
s = 1 + r + it.

3. If we arrange the non-trivial zeros of the Riemann zeta function in the upper half-plane as ρn = σn+iγn
where 0 < γ1 ≤ γ2 ≤ · · · then show that

γn ∼
2πn

log n
.

Deduce that
∑
ρ

1
|ρ| =∞.

4. Show that there exists some constant C > 0 such that there is no vertical gap greater than C between
successive zeros of ζ(s), that is,

N(T + C)−N(T ) > 0

for all sufficiently large T .

5. Let M(x) =
∑
n≤x µ(n).1 Let Θ = sup{σ : ζ(σ + it) = 0}.

(a) Show that M(x) = Ω±(xσ0) for every σ0 < Θ.

(b) If there is a simple zero of ζ(s) at ρ = Θ + it then show that M(x) = Ω±(xΘ).

(c) If there is a zero of ζ(s) of multiplicity m ≥ 2 at ρ = Θ + it then show that

M(x) = Ω±(xΘ(log x)m−1).

In particular, if we could prove that M(x) = O(x1/2) then we’d get both the Riemann hypothesis
and also that all zeros of ζ(s) are simple!

Hint: Consider the function 1
sζ(s) − c

(m−1)!
(s−Θ)m for some constant c > 0.

1Mertens conjectured in 1897 that |M(x)| ≤ x1/2 for all x ≥ 1. This was disproved by Odlyzko and te Riele in 1984.
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This ‘challenge question’ outlines a proof that there are infinitely many zeros on the line σ = 1/2.

6. CAUTION: DIFFICULT AND LENGTHY. Recall that ξ(s) = 1
2s(s − 1)π−s/2Γ(s/2)ζ(s). For t ∈ R

define Ξ(t) = ξ( 1
2 + it).

(a) Show that (when σ > 1)

Γ(s/2)π−s/2ζ(s) =

∫ ∞
0

F (x)x
s
2−1 dx

where

F (x) =

∞∑
n=1

e−n
2πx.

(b) Using
2F (x) + 1 = x−1/2 (2F (1/x) + 1) (1)

(which is an application of Poisson summation) show that

Γ(s/2)π−s/2ζ(s) =
1

s(s− 1)
+

∫ ∞
1

F (x)

(
x
s
2−1 + x−

1
2−

s
2

)
dx

and deduce the functional equation.

(c) Use (1) to also show that 4F ′(1) + F (1) = −1/2.

(d) Use integration by parts and set x = e2u to deduce that

Ξ(t) = 2

∫ ∞
0

Φ(u) cos(ut) du

where

Φ(u) = 6e
5
2uF ′(e2u) + 4e

9
2uF ′′(e2u).

(e) Deduce that for any n ≥ 0

Φ(2n)(u) =
(−1)n

π

∫ ∞
0

Ξ(t)t2n cos(ut) dt.

(f) Noting that, since F (x) is analytic for <x > 0, we know that Φ(u) is analytic for −π4 < =(u) < π
4 ,

deduce that for |u| < π/4

Φ(iu) =
∑
n≥0

cnu
2n

where

cn =
1

π(2n)!

∫ ∞
0

Ξ(t)t2n dt.

(g) Deduce from (1) that 1
2 +F (x) and all its derivatives tend to zero as x→ i provided the argument

of x− i is at most π/2 in absolute value.

(h) Deduce that Φ(iu) and all its derivatives tend to 0 as u→ π/4 along the real axis.

(i) Deduce that the coefficients cn must be both ≥ 0 and ≤ 0 infinitely often.

(j) Show that if Ξ(t) > 0 for t > T then∫ ∞
0

Ξ(t)t2n dt > (T + 1)2n

∫ T+2

T+1

Ξ(t) dt− T 2n

∫ T

0

|Ξ(t)| dt.

(k) Deduce that Ξ(t) has infinitely many real zeros, and hence ζ(s) has infinitely many zeros on the
line σ = 1/2.

2


