Infinitely many zeros on the critical line

In this note we go through the solution of the bonus Question 6 on Sheet 3, which outlines a
proof of Hardy’s theorem, that there are infinitely many zeros on the line ¢ = 1/2. This proof is
due to Pdlya.

Recall that £(s) = 2s(s — 1)m*/?T(s/2)¢(s). For t € R define Z(t) = (1 + it).
1. Show that (when o > 1)

S

D(s/2)n*/%¢(s) = /Ooo F(z)z2  da

where
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We plug in the definition of F'(x) into the integral on the right-hand side, and inter-
change the sum and integral, so

/ F(z w? 1da:—Z/ §-1le—n’me gp.

We should justifty the interchange of sum and integral here. We can do this with
the dominated convergence theorem, since the partial SUms of Y%  z2 ™™™ are

bounded above in absolute value by f(z) =Y ", z% le —n’ne , 80 it’s enough to show
that f is integrable. This in turn follows from the monotone convergence theorem,
which implies that
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The integral here is just I'(0/2) (which exists and is < oo for o > 0) and so we are
done provided > n~? < oo, which holds when o > 1.
Doing the same change of variable as above, we have that

o0 o0
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which is true provided o > 0. Therefore, the claim follows, summing over all n.

2. Usin
’ 2F(x) +1=a"Y2(2F(1/z) +1) (1)

(which is an application of Poisson summation) show that

/ F(z (2 53) dz

D(s/2)m*/2¢(s) =

and deduce the functional equation.



We first note that since the integral on the right-hand side is convergent for all s (when

s . _1_s
o > 1 the 227! term dominates and we can argue as above, when ¢ < 1 the 2~ 2 2
term dominates and we argue the same way with s replaced by 1 — s, and when o =1

it comes down to the convergence of
oo 00 , oo 00
1
Z/ (z72 +z Ve ™™ ™dr < Zn_Q/ e “dx < oo.
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In particular, the right-hand side is a meromorphic function in all of C, with the only
poles at s = 0 and s = 1. Therefore if we can show that the required identity holds
when ¢ > 1, then by uniqueness of analytic continuation it must hold for all s.
When o > 1 we can use the identity from part (1), to write

[(s/2)n~%/%¢(s) = /O h F(z)z2 " dz.

Divide this integral into the contribution from [0, 1] and from [1,00). The part from
[0,1] we can write, using (1), as
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We have

and so

1
/ F(z)z2 ldz =
0

Making the change of variable z = 1/y and adding back in the contribution from [1, c0)
yields

[(s/2)7=*/%¢(s) = S(si 0 +/1°° F(x) (;cil +x§§) dz

as required. Since the right-hand side is the same if we replace s by 1 — s the left-hand
side must be also, and so

7=*2¢(s)D(s/2) = 7~ Y/2H2T((1 - 5)/2)¢(1 - 5),

which implies the functional equation by the reflection formula

I(s/2) =

sin(ws/2)T'(1 — s/2)

and duplication formula
(1 —s/2) = 257201 — 5)/T((1 — 5)/2),

which together yield

xl/2

() sin(rs/2)2°T(1 — s)

D((1~8)/2) = a=/2F2D((1 - 5)/2)¢(1 - 5),

and hence
¢(s) = w5 12%sin(ws /2)T(1 — 5)C(1 — s)

as required.




3. Use (1) to also show that 4F'(1) + F(1) = —1/2.

e

\.

Differentiating both sides of (1) yields
2P (z) = —%x*i”/?(w(l/x) +1) — 2052F (1)),
Thus setting z = 1 we have
2F'(1) = —%(2F(1) +1) = 2F/(1).

Rearranging this yields the result.

4. Use integration by parts and set x = e?* to deduce that

E(t)=2 /000 ®(u) cos(ut) du

where

5 9
®(u) = 6e2“F'(e®) + 4e2" F" (e**).

Multiplying both sides of the result of part (2) by %s(s — 1) we have
1 1 > s_1 —_1l_s
§(s)—§—|—§s(s—1)/1 F(x) (372 +a7z 2) dz.

In particular, since Z(t) = £(% + it), we have

W =2tz /100 F(z) (xi%*% + x*“*%) da.
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Simplifying slightly and replacing z by €2, we have
1 e u
=(t) = £ — 2(% +1/4) / e% F (") cos(ut) du.
0
One application of integration by parts yields

/ e? F(e?) cos(ut) du = —/ = sin(ut) (262F(62u) + 2652FI(62u)> du.
0 0

Applying integration by parts again, and using the identity in part (3), yields

1 1

° 1 u u u u
e tj/ cos(ut) <4€2F(62") + e F/(e®) 4 5eF F'(e2) + 4@92F"(62“)> du.
0

Simplifying this, if I is the original integral, this integration by parts shows that
1 1 /1 > @ u
= P (4 +/0 cos(ut) (6657F'(62“) + 4697F"(e2")) du) )

which, after rearranging and recalling the definition of ®(u), yields
2 1 Oo
t“+1/49)I = 1 cos(ut)®(u) du.
0

Inserting this into the expression for Z(¢) above yields the result.




5. Deduce that for any n > 0

™

) (y) = =t /000 E(t)t*" cos(ut) dt.

Taking the Fourier transform of both sides, we see that
o0
5(%) = 2/ ®(u) cos(ut) du
0

implies
D(u) = l/ E(t) cos(ut) dt.
0

™

In particular it follows immediately that for any n > 1, we have

=) /Oo E(t)t*" cos(ut) dt,
0

®20) () =
7r

provided we can ‘differentiate under the integral sign’. By Leibniz’s rule this is permit-
ted since the relevant derivatives exist and are continuous, and the integrals converge

absolutely by the rapid decay of Z(t).

6. Noting that, since F'(x) is analytic for Rz > 0, we know that ®(u) is analytic for —F
S(u) < %, deduce that for |u| < 7/4

O(iu) = Z cnu®™

n>0

1 o0
= 7/ ()" dt.
0

o 7w(2n)!

where

First note that by part (5)

G = ((;711))7 Cm)(0).

Since ®(u) is analytic around z for |z| < m/4, we can write ®(z) as a Taylor series,

D(z) =Y q><m>(o)%.

m>0

Since ®(z) is an even function the even derivatives are all odd, and in particular
®(™)(0) = 0 for odd m. The conclusion then follows setting z = iu.




7. Deduce from (1) that % + F(x) and all its derivatives tend to zero as x — ¢ provided the
argument of x — 4 is at most 7/2 in absolute value.

\.

Let x =i + z, say. We have

Fli+z)=)Y e+ = N (_1)me™™ = 9F(4z) — F(2).
n=1 n=1

Using (1) we have
F(i+2)=2"Y2F(1/42) — 2~ Y2F(1/z) — 1/2.

Therefore,

% + F(i+2) = 2" Y2F(1/42) — 27Y2F(1/2).

Provided the argument of z is at most /2 in absolute value the right-hand side tends
to 0 as z — 0, by the rapid decay of F.

8. Deduce that ®(iu) and all its derivatives tend to 0 as u — /4 along the real axis.

By definition . 4 . 4
®(iu) = 6e2"“F'(e?") + 4e2 ™ F" (e**1).

It therefore suffices to show that 3 + F(e?"!) and all of its derivatives tend to 0 as
u — m/4 along the real axis. This is precisely the content of part (7).

9. Deduce that the coefficients ¢, must be both > 0 and < 0 infinitely often.

7

By part (6)
D(1u) = Z cnu?™.

n>0

If ¢,, = 0 for all large n then we are done. Otherwise, suppose that c¢,, is all the same
sign (say > 0) for all n > k. Taking kth derivatives, it follows that there are other
constants ¢/, > 0 such that

®CR) (ju) = Z c u?n2k,

n>k

Since the left-hand side tends to 0 as u — 7/4 along the real axis (from above, say),
and ¢}, > 0, this is a contradiction.




10. Show that if Z(¢) > 0 for ¢t > T then

e’} T+2 T
/ 2t dt > (T + 1)2"/ E(t)dt — TQ"/ |Z(t)| dt.
0 0

T+1

By considering the worst possible contribution from [0, 7], we have

o] o] T
/ E(t)*" dt > / E()"dt — 1" / |=(t)| dt.
0 0

The contribution from [T+ 1,7 + 2] is at least (7 + 1)3" g:f E(t) dt, and the contri-

bution from [T, T + 1] and [T + 2,00) is > 0 by the assumed positivity of Z(¢).

11. Deduce that =(t) has infinitely many real zeros, and hence ((s) has infinitely many zeros on

the line o = 1/2.

Suppose that Z(¢) has only finitely many real zeros. Therefore, for sufficiently large ¢,
either Z(t) > 0 or Z(¢) < 0 always. Suppose that Z(t) > 0 for ¢t > T (the case Z(¢) < 0
is similar). Then, by part (10),

fe’) T+2 T
(2n)le, = / S(O)Er dt > (T + 1)2" / =(£)dt — T2 / =) dt.
0 T+1 0

In particular, (since T is fixed) the right-hand side is > 0 for sufficiently large n, and
hence ¢, > 0 for all sufficiently large many n, contradicting part (9).
Thus =Z(¢) has infinitely many real zeros, and since

1 1
E(t) = £( +it) = 58 + 1/~ 120G + §0)C(1/2 + i),
and the Gamma function has no zeros for o > 0, whenever Z(t) = 0 (for real t) we

must have ((1/2 + it) = 0, and ¢ has infinitely many zeros on the line ¢ = 1/2 as
required.




