
Infinitely many zeros on the critical line

In this note we go through the solution of the bonus Question 6 on Sheet 3, which outlines a
proof of Hardy’s theorem, that there are infinitely many zeros on the line σ = 1/2. This proof is
due to Pólya.

Recall that ξ(s) = 1
2s(s− 1)π−s/2Γ(s/2)ζ(s). For t ∈ R define Ξ(t) = ξ( 1

2 + it).

1. Show that (when σ > 1)

Γ(s/2)π−s/2ζ(s) =

∫ ∞
0

F (x)x
s
2−1 dx

where

F (x) =
∞∑
n=1

e−n
2πx.

We plug in the definition of F (x) into the integral on the right-hand side, and inter-
change the sum and integral, so∫ ∞

0

F (x)x
s
2−1 dx =

∞∑
n=1

∫ ∞
0

x
s
2−1e−n

2πx dx.

We should justifty the interchange of sum and integral here. We can do this with
the dominated convergence theorem, since the partial sums of

∑∞
n=1 x

s
2−1e−n

2πx are

bounded above in absolute value by f(x) =
∑∞
n=1 x

σ
2−1e−n

2πx, so it’s enough to show
that f is integrable. This in turn follows from the monotone convergence theorem,
which implies that∫ ∞

0

f(x) dx =

∞∑
n=1

∫ ∞
0

x
σ
2−1e−n

2πx dx =

∞∑
n=1

n−σπ−σ/2
∫ ∞
0

x
σ
2−1e−x dx.

The integral here is just Γ(σ/2) (which exists and is < ∞ for σ > 0) and so we are
done provided

∑
n−σ <∞, which holds when σ > 1.

Doing the same change of variable as above, we have that∫ ∞
0

x
s
2−1e−n

2πx dx = n−sπ−s/2
∫ ∞
0

x
s
2−1e−x dx = n−sπ−s/2Γ(s/2),

which is true provided σ > 0. Therefore, the claim follows, summing over all n.

2. Using
2F (x) + 1 = x−1/2 (2F (1/x) + 1) (1)

(which is an application of Poisson summation) show that

Γ(s/2)π−s/2ζ(s) =
1

s(s− 1)
+

∫ ∞
1

F (x)

(
x
s
2−1 + x−

1
2−

s
2

)
dx

and deduce the functional equation.
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We first note that since the integral on the right-hand side is convergent for all s (when

σ > 1 the x
s
2−1 term dominates and we can argue as above, when σ < 1 the x−

1
2−

s
[
2

term dominates and we argue the same way with s replaced by 1− s, and when σ = 1
it comes down to the convergence of

∞∑
n=1

∫ ∞
1

(x−
1
2 + x−1)e−n

2πx dx�
∞∑
n=1

n−2
∫ ∞
1

e−x dx <∞.

In particular, the right-hand side is a meromorphic function in all of C, with the only
poles at s = 0 and s = 1. Therefore if we can show that the required identity holds
when σ > 1, then by uniqueness of analytic continuation it must hold for all s.
When σ > 1 we can use the identity from part (1), to write

Γ(s/2)π−s/2ζ(s) =

∫ ∞
0

F (x)x
s
2−1 dx.

Divide this integral into the contribution from [0, 1] and from [1,∞). The part from
[0, 1] we can write, using (1), as∫ 1

0

F (x)x
s
2−1 dx =

∫ 1

0

x
s
2−1

(
x−1/2F (1/x) +

x−1/2

2
− 1

2

)
dx.

We have
1

2

∫ 1

0

x
s
2−3/2 dx =

1

s− 1
and

1

2

∫ 1

0

x
s
2−1 dx =

1

s

and so ∫ 1

0

F (x)x
s
2−1 dx =

1

s− 1
− 1

s
+

∫ 1

0

x
s
2−

3
2F (1/x) dx.

Making the change of variable x = 1/y and adding back in the contribution from [1,∞)
yields

Γ(s/2)π−s/2ζ(s) =
1

s(s− 1)
+

∫ ∞
1

F (x)

(
x
s
2−1 + x−

1
2−

s
2

)
dx

as required. Since the right-hand side is the same if we replace s by 1−s the left-hand
side must be also, and so

π−s/2ζ(s)Γ(s/2) = π−1/2+s/2Γ((1− s)/2)ζ(1− s),

which implies the functional equation by the reflection formula

Γ(s/2) =
π

sin(πs/2)Γ(1− s/2)

and duplication formula

Γ(1− s/2) = 2sπ1/2Γ(1− s)/Γ((1− s)/2),

which together yield

π−s/2ζ(s)
π1/2

sin(πs/2)2sΓ(1− s)
Γ((1− s)/2) = π−1/2+s/2Γ((1− s)/2)ζ(1− s),

and hence
ζ(s) = πs−12s sin(πs/2)Γ(1− s)ζ(1− s)

as required.
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3. Use (1) to also show that 4F ′(1) + F (1) = −1/2.

Differentiating both sides of (1) yields

2F ′(x) = −1

2
x−3/2(2F (1/x) + 1)− 2x−5/2F ′(1/x).

Thus setting x = 1 we have

2F ′(1) = −1

2
(2F (1) + 1)− 2F ′(1).

Rearranging this yields the result.

4. Use integration by parts and set x = e2u to deduce that

Ξ(t) = 2

∫ ∞
0

Φ(u) cos(ut) du

where

Φ(u) = 6e
5
2uF ′(e2u) + 4e

9
2uF ′′(e2u).

Multiplying both sides of the result of part (2) by 1
2s(s− 1) we have

ξ(s) =
1

2
+

1

2
s(s− 1)

∫ ∞
1

F (x)
(
x
s
2−1 + x−

1
2−

s
2

)
dx.

In particular, since Ξ(t) = ξ( 1
2 + it), we have

Ξ(t) =
1

2
− 1

2
(t2 + 1/4)

∫ ∞
1

F (x)
(
xi

t
2−

3
4 + x−it−

3
4

)
dx.

Simplifying slightly and replacing x by e2u, we have

Ξ(t) =
1

2
− 2(t2 + 1/4)

∫ ∞
0

e
u
2 F (e2u) cos(ut) du.

One application of integration by parts yields∫ ∞
0

e
u
2 F (e2u) cos(ut) du = −

∫ ∞
0

1

t
sin(ut)

(
1

2
e
u
2 F (e2u) + 2e

5u
2 F ′(e2u)

)
du.

Applying integration by parts again, and using the identity in part (3), yields

− 1

4t2
− 1

t2

∫ ∞
0

cos(ut)

(
1

4
e
u
2 F (e2u) + e

5u
2 F ′(e2u) + 5e

5u
2 F ′(e2u) + 4e

9u
2 F ′′(e2u)

)
du.

Simplifying this, if I is the original integral, this integration by parts shows that

I = − 1

4t2
− 1

t2

(
I

4
+

∫ ∞
0

cos(ut)
(

6e
5u
2 F ′(e2u) + 4e

9u
2 F ′′(e2u)

)
du

)
,

which, after rearranging and recalling the definition of Φ(u), yields

(t2 + 1/4)I = −1

4
−
∫ ∞
0

cos(ut)Φ(u) du.

Inserting this into the expression for Ξ(t) above yields the result.
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5. Deduce that for any n ≥ 0

Φ(2n)(u) =
(−1)n

π

∫ ∞
0

Ξ(t)t2n cos(ut) dt.

Taking the Fourier transform of both sides, we see that

Ξ(t) = 2

∫ ∞
0

Φ(u) cos(ut) du

implies

Φ(u) =
1

π

∫ ∞
0

Ξ(t) cos(ut) dt.

In particular it follows immediately that for any n ≥ 1, we have

Φ(2n)(u) =
(−1)n

π

∫ ∞
0

Ξ(t)t2n cos(ut) dt,

provided we can ‘differentiate under the integral sign’. By Leibniz’s rule this is permit-
ted since the relevant derivatives exist and are continuous, and the integrals converge
absolutely by the rapid decay of Ξ(t).

6. Noting that, since F (x) is analytic for <x > 0, we know that Φ(u) is analytic for −π4 <
=(u) < π

4 , deduce that for |u| < π/4

Φ(iu) =
∑
n≥0

cnu
2n

where

cn =
1

π(2n)!

∫ ∞
0

Ξ(t)t2n dt.

First note that by part (5)

cn =
(−1)n

(2n)!
Φ(2n)(0).

Since Φ(u) is analytic around z for |z| < π/4, we can write Φ(z) as a Taylor series,

Φ(z) =
∑
m≥0

Φ(m)(0)
zm

m!
.

Since Φ(z) is an even function the even derivatives are all odd, and in particular
Φ(m)(0) = 0 for odd m. The conclusion then follows setting z = iu.
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7. Deduce from (1) that 1
2 + F (x) and all its derivatives tend to zero as x → i provided the

argument of x− i is at most π/2 in absolute value.

Let x = i+ z, say. We have

F (i+ z) =

∞∑
n=1

e−n
2π(i+z) =

∞∑
n=1

(−1)ne−n
2πz = 2F (4z)− F (z).

Using (1) we have

F (i+ z) = z−1/2F (1/4z)− z−1/2F (1/z)− 1/2.

Therefore,
1

2
+ F (i+ z) = z−1/2F (1/4z)− z−1/2F (1/z).

Provided the argument of z is at most π/2 in absolute value the right-hand side tends
to 0 as z → 0, by the rapid decay of F .

8. Deduce that Φ(iu) and all its derivatives tend to 0 as u→ π/4 along the real axis.

By definition
Φ(iu) = 6e

5
2 iuF ′(e2ui) + 4e

9
2 iuF ′′(e2ui).

It therefore suffices to show that 1
2 + F (e2ui) and all of its derivatives tend to 0 as

u→ π/4 along the real axis. This is precisely the content of part (7).

9. Deduce that the coefficients cn must be both ≥ 0 and ≤ 0 infinitely often.

By part (6)

Φ(iu) =
∑
n≥0

cnu
2n.

If cn = 0 for all large n then we are done. Otherwise, suppose that cn is all the same
sign (say > 0) for all n ≥ k. Taking kth derivatives, it follows that there are other
constants c′n > 0 such that

Φ(2k)(iu) =
∑
n≥k

c′nu
2n−2k.

Since the left-hand side tends to 0 as u → π/4 along the real axis (from above, say),
and c′n > 0, this is a contradiction.
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10. Show that if Ξ(t) > 0 for t > T then∫ ∞
0

Ξ(t)t2n dt > (T + 1)2n
∫ T+2

T+1

Ξ(t) dt− T 2n

∫ T

0

|Ξ(t)| dt.

By considering the worst possible contribution from [0, T ], we have∫ ∞
0

Ξ(t)t2n dt ≥
∫ ∞
T

Ξ(t)t2n dt− T 2n

∫ T

0

|Ξ(t)| dt.

The contribution from [T + 1, T + 2] is at least (T + 1)2n
∫ T+2

T+1
Ξ(t) dt, and the contri-

bution from [T, T + 1] and [T + 2,∞) is > 0 by the assumed positivity of Ξ(t).

11. Deduce that Ξ(t) has infinitely many real zeros, and hence ζ(s) has infinitely many zeros on
the line σ = 1/2.

Suppose that Ξ(t) has only finitely many real zeros. Therefore, for sufficiently large t,
either Ξ(t) > 0 or Ξ(t) < 0 always. Suppose that Ξ(t) > 0 for t > T (the case Ξ(t) < 0
is similar). Then, by part (10),

π(2n)!cn =

∫ ∞
0

Ξ(t)t2n dt > (T + 1)2n
∫ T+2

T+1

Ξ(t) dt− T 2n

∫ T

0

|Ξ(t)| dt.

In particular, (since T is fixed) the right-hand side is > 0 for sufficiently large n, and
hence cn > 0 for all sufficiently large many n, contradicting part (9).
Thus Ξ(t) has infinitely many real zeros, and since

Ξ(t) = ξ( 1
2 + it) =

1

2
(t2 + 1/4)π−

1
4−it/2Γ( 1

4 + t
2 i)ζ(1/2 + it),

and the Gamma function has no zeros for σ > 0, whenever Ξ(t) = 0 (for real t) we
must have ζ(1/2 + it) = 0, and ζ has infinitely many zeros on the line σ = 1/2 as
required.
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