
PRIMER ON COMPLEX ANALYSIS FOR ANALYTIC NUMBER THEORY

As is traditional in this area, we will often write s = σ+ it ∈ C for an arbitrary complex variable, in which
case σ = <s is the real part of s and t = =s is the imaginary part. The derivative of a function f : C → C
at a point s is defined to be

f ′(s) = lim
z→s

f(z)− f(s)

z − s
.

Implicit in this definition is the fact the limit exists and remains the same for any sequence of (z) which has
s as a limit. A neighbourhood of s is a bounded open set which contains s. We say that f is holomorphic
on an open set U if f ′(s) exists for every s ∈ U , and that f is holomorphic at s if f is holomorphic on some
neighbourhood of s. A function is entire if it is holomorphic on C.

A smooth curve is a continuous function γ : [a, b]→ C with a non-vanishing continuous derivative which is
injective (except possibly at the endpoints). More generally, a contour is a finite sequence of smooth curves
joined at the endpoints. The contour integral of f along a smooth curve γ is∫

γ

f(s) ds =

∫ b

a

f(γ(t))γ′(t) dt,

which is extended in the obvious fashion for general contours.

Theorem 1 (Cauchy’s theorem). If U is an open simply connected set, f is holomorphic on U , and γ is a
closed contour in U , then ∫

γ

f(s) ds = 0.

Theorem 2 (Cauchy integral formula). If D is a closed disc with boundary circle C and f is holomorphic
on a neighbourhood of D then for every a in the interior of D

f(a) =
1

2πi

∫
C

f(s)

s− a
ds.

Theorem 3. Every holomorphic function is analytic. That is, if f is holomorphic on some neighbourhood
of a then there is some open disc centred at a in which f can be expanded as a convergent power series

f(s) =

∞∑
n=0

cn(s− a)n.

The coefficients cn are

cn =
f (n)(a)

n!
=

1

2πi

∫
C

f(w)

(w − a)n+1
dw,

where C is any circle centred at a on and within which f is holomorphic.

Theorem 4 (Identity Theorem). If f and g are both holomorphic on an open and connected set D and
f = g for all s ∈ S ⊂ D, where S is such that there is some x ∈ D such that every neighbourhood of x in D
contains some point in S, then f ≡ g on D.

A function f is meromorphic at a point a if there is some neighbourhood of a on which either f or
1/f is holomorphic. In this case there is some n such that (s − a)nf(s) is holomorphic and non-zero in a
neighbourhood of a. If n > 0 then a is a pole of f of order n. If n < 0 then a is a zero of f of order −n. If f
is meromorphic at a then there is some neighbourhood of a in which f can be expressed as a Laurent series,

∞∑
n=−k

cn(z − a)n,

for some finite integer k. The coefficient c−1 is the residue of f at a, and is denoted by Res(f, a).
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Theorem 5 (Residue theorem). If U is a simply connected open set which contains a simple closed curve
γ, f is holomorphic on γ, and is holomorphic inside γ except for a finite sequence a1, . . . , ak, then∫

γ

f(s) ds = 2πi

k∑
i=1

Res(f, ak).

Theorem 6 (Maximum modulus principle). If U is a connected open set and f is holomorphic on U , and if
there exists some a ∈ U such that |f(a)| ≥ |f(s)| for all s in a neighbourhood of a, then f is constant on D.

If U is a simply connected open set and f is holomorphic and non-zero on U then we define log f(z) on
U as

log f(z) = a+

∫ z

b

f ′(s)

f(s)
ds,

where b ∈ U and a is such that exp(a) = f(b). The integral can be taken over any path between b and
z. This function is well-defined up to a constant (depending on the choice of a and b) which is always an
integral multiple of 2πi.


