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CHAPTER 1

Lecture One

1. What is the density increment method?

The density increment method is one of the oldest and most useful tools in addi-
tive combinatorics. It is an efficient way of turning the ‘structure vs. randomness’
heuristic into an actual proof. The general idea behind the method is:

(1) We want to prove some property of a set which is perhaps quite sparse
inside some global structure.

(2) Show that this property holds if the set behaves randomly.
(3) Show that this property holds if the set is very dense inside the global

structure.
(4) Show that if a set does not behave randomly then there is some local struc-

ture whose interection with the original set is larger than we expect (a
‘density increment’).

(5) Then throw away the rest of the universe and treat this local structure as
a global structure. Iterate.

(6) Since the density cannot increase forever, at some point we must either
behave randomly, or are very dense. In either case we have the desired
property inside some subset of the original set, and deduce it about the
original set.

This is perhaps a little too abstract to be useful, so I’ll explain what happens in
perhaps the most famous application of the density increment argument: finding
three-term arithmetic progressions.

Question 1. What is the size of the largest A ⊆ {1, . . . , N} that does not contain a
three-term arithmetic progression? (i.e. x, x+d, x+2d with d ̸= 0, or equivalently,
a solution to x+ y = 2z with x ̸= y).

This is a very old question in additive combinatorics, and we’ll study it in some
depth. It was first considered (in print at least) by Erdős and Turán in 1936, who
proved that we must have |A| ≤ ( 49 + o(1))N . They conjectured that |A| = o(N),
and a convincing reason for this conjecture is given by the structure vs. randomness
heuristic.

Firstly, what happens if A ⊆ {1, . . . , N} is a random set, say selecting each
element with probability p? There are ≍ N2 many 3APs in {1, . . . , N} and each
one survives to be a 3AP in A with probability p3. Therefore we expect ≫ p3N2

many 3APs and this is ≥ 1 if p ≫ N−2/3. Heuristically then if A is a random set
of size ≫ N1/3 then we might expect there to be 3APs. So certainly a random set
of size ≫ N should contain 3APs.

At the other extreme, what happens if A is very structured, like being an arith-
metic progression itself? Well then clearly A contains lots of 3APs. Note that,
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importantly, this is true whichever progression A is, as there are no ‘local obstruc-
tions’. This should be compared to the similar problem of finding solutions to
x+ y = z – here there are obvious obstructions and we can take A to be the set of
odd numbers, a set with density 1/2 without solutions.

So if A is random or very structured then we expect to find 3APs. Of course
there are many sets which are neither, but the fact that in both extremes it’s true
that ‘if |A| ≫ N then A contains 3APs’ with lots of room to spare (for random sets
|A| ≫ N1/3 suffices, for structured sets |A| ≥ 3 suffices) suggests that we might be
able to interpolate between both extremes to cover all sets. This interpolation is
the density increment method - given an arbitrary set either it’s random or we can
push it more towards the structured end.

The conjecture of Erdős and Turán was proved by Roth in 1953, in what is
perhaps the birth of the density increment method.

Theorem 1 (Roth 1953). For any δ > 0 there exists N ≪δ 1 such that if
A ⊆ {1, . . . , N} has |A| ≥ δN then A contains a non-trivial three-term arithmetic
progression.

In fact Roth proved the explicit estimate that if A ⊆ {1, . . . , N} contains no 3APs
then

|A| ≪ N

log logN
.

For this theorem we can summarise the density increment method as follows:

(1) (the random part) if A ⊆ {1, . . . , N} has |A| ≫ N and
∑

n∈A e(nθ) = o(|A|)
for every θ ∈ (1/N, 1) (where e(x) = e2πix) then A contains non-trivial
three-term arithmetic progressions.

(2) (the density increment part) if
∑

n∈A e(nθ) ≫ |A| then A has larger than
expected density on some arithmetic progression P ⊆ {1, . . . , N}.

(3) Now repeat, viewing P (say of length M) as a dilated/translated copy of
{1, . . . ,M}.

Roth’s bound has been improved a number of times. In this course I’ll discuss
in particular the following two landmark results, both of which use the density
increment method.

Theorem 2 (Bourgain 1999). If A ⊆ {1, . . . , N} contains no 3APs then

|A| ≪ N

(logN)1/2−o(1)
.

The following result is a very recent breakthrough, which came as a big surprise.
For context, the best known lower bound (due to Behrend 1946) has a set A without
3APs of size

|A| ≫ N

exp(c(logN)1/2)

for some constant c > 0.

Theorem 3 (Kelley-Meka 2023). If A ⊆ {1, . . . , N} contains no 3APs then

|A| ≪ N

exp(c(logN)1/12)

for some constant c > 0.
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I’ll sketch the Kelley-Meka approach, but will prove in detail the Bourgain result
– Bourgain’s proof is a masterclass in the proper use of the density increment
method and Bohr sets, and displays a lot of important technical details that are
glossed over in other treatments.

The rough plan for this course is to cover the following:

(1) Meshulam’s bound and the finite field model (3APs in Fn
p ).

(2) Bohr sets and basic theory.
(3) Bourgain’s bound.
(4) Chang’s lemma.
(5) Sketch of the idea behind Bateman-Katz.
(6) Sketch of the Kelley-Meka proof.
(7) Application of density increment to colouring problems.
(8) Energy increment method.

2. Preliminaries

Asymptotic notation. We write f(x) = O(g(x)) if there exists some constant
C > 0 such that |f(x)| ≤ C |g(x)| for all sufficiently large x. We will also use the
Vinogradov notation f ≪ g to denote the same thing (so that f = O(g) and f ≪ g
are equivalent). Occasionally we will use subscript notation to denote dependence
of the constants. For example, f ≪δ g means there exists some constant C(δ)
depending on δ such that |f(x)| ≤ C(δ) |g(x)| for all sufficiently large x (where
sufficiently large may also depend on δ). We may write O(f) to denote some
unspecified function g which satisfies g = O(f) (for example, one can say (x+h)2 =
x2 +Oh(x)).

We write f = o(g) if limx→∞
f(x)
g(x) = 0 . We will also write f ≍ g to mean

f ≪ g ≪ f . We also write f ≲ g to mean f ≤ (logX)O(1)g where X is some
parameter usually clear from context.

Functions. We will usually adopt an analytic point of view, in particular often
viewing sets A ⊆ G as their indicator function

1A(x) =

{
1 if x ∈ A and

0 otherwise.

We define the convolution of two functions f, g : G → C by

f ∗ g(x) =
∑
y∈G

f(y)g(x− y) =
∑

y+z=x

f(y)g(z).

It’s convenient to define the difference convolution by

f ◦ g(x) =
∑
z∈G

f(x+ z)g(z) =
∑

y−z=x

f(y)g(z).

We also define the inner product by

⟨f, g⟩ =
∑
x

f(x)g(x).

We note here the trivial, but useful, adjoint property, that

⟨f ∗ g, h⟩ = ⟨f, h ◦ g⟩.
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Indeed, this is nothing more than an analytic expression of the triviality

x+ y = z if and only if x = z − y.

Dyadic pigeonholing. Suppose we have a function f : X → [δ,∆]. The idea
of dyadic pigeonholing (sometimes called ‘layer-cake decomposition’ in harmonic
analysis) is to divide the domain into level sets of the shape {x : 2k ≤ f(x) <
2k+1}. There are O(log(∆/δ)) many such level sets we need to consider, which
for many applications is a negligible factor. Ignoring this factor therefore we can
essentially assume the function is constant up to a multiplicative factor. This is
very useful for both proofs and heuristics, and can be used as a more informative
version of the Cauchy-Schwarz inequality (or Hölder’s inequality). For example if
f : X → {1, . . . ,M} then we know by Cauchy-Schwarz that∑

x∈X

f(x)2 ≥ |X|−1
(∑

f(x)
)2

.

On the other hand, by dyadic pigeonholing, there exists some set S ⊆ X and an
integer K such that f(x) ≍ K on S and

|S| ≳ K−1
∑

f(x).

It follows that ∑
x∈S

f(x)2 ≫ K2 |S| ≫ K
∑

f(x).

Since |S| ≤ |X| we know that K ≫ |X|−1∑
f(x), and so this recovers the Cauchy-

Schwarz conclusion (a little weaker by a factor of O(logM)). If f is roughly constant
on X then S = X and we get nothing new. If not, however, then we have done
better than Cauchy-Schwarz by having

∑
x∈S f(x)2 large with a much smaller S.

Of course there are various equivalent ways to do this – the observation that
Cauchy-Schwarz can be improved if the function is not constant can be formalised
in various ways. I find, however, this coarse dyadic pigeonhole trick to be the easiest
to think about.

Fourier analysis. For any finite abelian group G, we can consider its dual group

Ĝ of characters, which are homomorphisms γ : G → C. The set of characters can
be made into a group, with the group operation given by pointwise multiplication,
so that (γ · λ)(x) = γ(x)λ(x). We will use 1 to denote the trivial character, the

identity of Ĝ. We will always use lower-case Greek letters to denote characters, and

will use additive notation for the group operation in both G and Ĝ.

Lemma 1. If G is a finite abelian group then Ĝ is isomorphic to G. (In particular
it is also a finite abelian group, and is of the same order.)

For example, if G = Fn
p , then for any γ ∈ Fn

p we have an associated character

γ(x) := e(γ · x/p),

with e(x) = e2πix. Similarly, if G = Z/NZ, any γ ∈ Z/NZ yields a character by

γ(x) = e(γx/N)

(where we think of γ and x as integers in {1, . . . , N}, for example).
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We will adopt the convention that when talking about G we will use the ‘counting

measure’, i.e. unnormalised sums. When dealing with Ĝ, we will use the ‘probabil-
ity measure’, which is just a sum but normalised by dividing through by the size
of the group. (There are good philosophical reasons for this: it is known that the
dual operation turns discrete groups (which naturally have the counting measure)
into compact groups (which naturally have a probability measure), and vice versa.
As G is finite, it is both compact and discrete, so one could use either the counting
or probability measure, and both are defensible positions. If we decide to prioritise

that G is discrete, in using the counting measure, then it is natural to view Ĝ as a
compact group above all else, hence the probability measure.)

Thus the natural inner product for functions on G is

⟨f, g⟩ =
∑
x∈G

f(x)g(x).

When dealing with Ĝ it is convenient to introduce new notation that hides the
normalising factor – convention in this area is to use expectation notation. In this
context it has nothing to do with probability, but is defined as

E
γ∈Ĝ

f(γ) =
1

|G|
∑
γ∈Ĝ

f(γ).

Use of the expectation notation is widespread in additive combinatorics, and is a
very convenient way of sweeping normalising factors under the rug. In general, one
should just view it as a sum, and check at the end that the normalising factors of
1/ |G| go where they should.

Definition 1. For any f : G → C we define the Fourier transform of f to

be the function f̂ : Ĝ → C defined by

f̂(γ) = ⟨f, γ⟩ =
∑
x∈G

f(x)γ(x) =
∑
x

f(x)γ(−x).

Lemma 2 (Parseval’s identity). For any f, g : G → C,

⟨f, g⟩ = ⟨f̂ , ĝ⟩.

In particular, ∥f∥2 = ∥f̂∥2 for any function f : G → C.

Proof. This is simply writing out the definitions and rearranging (remember all
sums are finite, so no delicate analytical issues arise), and using orthogonality:

⟨f, g⟩ =
∑
x∈G

f(x)g(x)

=
∑

x,y∈G

f(x)g(y)E
γ∈Ĝ

γ(y − x)

= E
γ∈Ĝ

(∑
x∈G

f(x)γ(−x)

)∑
y∈G

g(y)γ(−y)


= ⟨f̂ , ĝ⟩.
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□

Lemma 3 (Diagonalising convolution). For any f, g : G → C,

f̂ ∗ g = f̂ · ĝ
and

f̂ ◦ g = f̂ · ĝ.

Proof. By definition, for any γ ∈ Ĝ,

f̂ ∗ g(γ) =
∑

x,y∈G

f(x)g(y)γ(x+ y).

Since γ(x + y) = γ(x)γ(y) this sum factorises and we’re done. The other claim is
proved in a similar fashion:

f̂ ◦ g(γ) =
∑

x,y∈G

f(x)g(y)γ(x− y) =

(∑
x∈G

f(x)γ(x)

)∑
y∈G

g(y)γ(y)

 .

□

In particular, for example, if A ⊆ G then

̂1A ◦ 1A = |1̂A|2,
and so the Fourier transform of 1A ◦ 1A is always a non-negative real number. This
is much more convenient that the Fourier transform of 1A ∗ 1A, which may take
complex values. This is one reason why it is often more convenient to work with ◦
than ∗.

Finally, we remark that the Fourier transform is invertible, in the following sense.

Lemma 4. For any f : G → C and any x ∈ G,

f(x) =E
γ

f̂(γ)γ(x).

The proof is a simple exercise in orthogonality (or follows directly from Parseval’s
identity).



CHAPTER 2

Lecture Two

3. Roth’s theorem in Fn
p

The most interesting setting for additive combinatorics is usually the integers
– but the questions make sense over any abelian group. It is often much simpler
to study these questions over a simpler abelian group such as Fn

p , where p is some
fixed small prime. This is known as the ‘finite field model’ (there are now no less
than three surveys on this, due to Ben Green, Julia Wolf, and Sarah Peluse).

The point is that Fn
p behaves like a very rigid/structured version of the integers,

so many technical difficulties are smoothed over. Assuming the kind of proof tech-
niques we use are robust enough (e.g. Fourier analysis) the hope is that when we
go to the integers and replace exact structure by approximate structure a form of
the same proof, with the same basic ideas but more technical workarounds, will go
through.

Question 2. Let p ≥ 3 be a fixed prime. What is the size of the largest A ⊆ Fn
p

that does not contain a three-term arithmetic progression? (i.e. x, x + d, x + 2d
with d ̸= 0, or equivalently, a solution to x+ y = 2z with x ̸= y).

We remark here that it is much more convenient to count all solutions to x+y =
2z, even those ‘trivial’ ones with x = y = z. Generally, from now on, when I say
3AP I will include such trivial ones.

Before the proof, we’ll give a big picture sketch. We are given a set A ⊆ Fn
p , and

all we know about it is its size. Suppose A has no non-trivial 3APs. We want to
show α = |A| /pn is small. The idea of the density increment process is to show
that either:

(1) A has ≫ α3p2n many 3APs (the ‘random’ case), and hence
(a) A is very small, α ≪ p−n/2, and done, or
(b) A has non-trivial 3APs, contradiction,
or,

(2) A must be structured in the following weak sense: it is not well-distributed
across different cosets. In particular, there is a large (coset of a ) subspace
W ≤ Fn

p on which the density of A is large.

But then we zoom in on A intersect this coset. Translate the coset so that it’s also
a subspace. There are still no 3APs, since 3APs are translation invariant. So we
now have a large subset of W without 3APs. Do it all over again! We can’t carry
on in the second case forever, since the density can never go past 1. So at some
point exit in the very small case.

In this section we’ll make the above sketch rigorous. Fourier analysis will be
essential in the structured case, and we will use it to find the subspace on which A
has increased density.
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Our goal is to prove the following estimate.

Theorem 4 (Meshulam). If A ⊆ Fn
p has no non-trivial three-term arithmetic pro-

gressions then

|A| ≪p
pn

n
.

(In particular, |A| /pn → 0 as n → ∞.)

(Note that, writing N = pn for the size of the group, this upper bound looks
like |A| ≪ N/ logN , which is better than Bourgain’s upper bound of |A| ≪
N/(logN)1/2+o(1) – but Bourgain’s bound works for the harder setting of Z/NZ!)

Our main tool is the following lemma, which says that if A has no 3APs then
either A is small, or there is a large density increment.

Lemma 5. Let V be an n-dimensional vector space over Fp, and let A ⊆ V be
a subset of density α = |A| /pn. Suppose that A has no non-trivial three-term
arithmetic progressions. Then either

(1) |A| ≤ (2pn)1/2, or
(2) there is a subspace V ′ ≤ V of codimension 1 and x ∈ V such that

|(A− x) ∩ V ′|
|V ′|

≥ (1 + 1
4α)α.

Before proving this, we will show how to use it iteratively in a density increment
fashion to prove Meshulam’s theorem. There are various different ways to phrase
this. We find using the language of maximality the most straightforward.

Proof of Theorem 4. Let A ⊆ Fn
p be a fixed set of density α > 0 without non-trivial

3APs. Our goal is to show that α ≪ pn/n. If α ≤ p−n/4 then we’re done, so suppose
that α > p−n/4. Also, note that it suffices to prove the bound for large n, since for
small n we can just use the trivial |A| ≤ pn and change the hidden constant in ≪p

accordingly.
Let k ≥ 0 be maximal such that the following holds. There is a sequence of sets

A0, . . . , Ak and associated vector spaces V0, . . . , Vk such that

(1) A0 = A and V0 = Fn
p ,

(2) Ai ⊆ Vi,
(3) Ai has no non-trivial three-term arithmetic progressions,
(4) if αi = |Ai| / |Vi| then

αi+1 ≥ (1 + αi/4)αi,

(5) |Vi+1| ≥ |Vi| /p.
How large can k be? Well, simple induction shows that

αi ≥ (1 + α/4)iα ≥ (1 + iα/4)α.

In particular, after ⌈4/α⌉ many steps, αi ≥ 2α. After another ⌈4/2α⌉ many steps,
αi ≥ 4α, and so on. In the end, after

r∑
i=0

⌈4/2iα⌉
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many steps, the density is ≥ 2rα – but since trivially the density is ≤ 1, this forces
r ≪ log(1/α). So

k ≤
O(log(1/α))∑

i=0

⌈4/2iα⌉ ≪
∞∑
i=0

(4/2iα) +O(log(1/α)) ≪ α−1.

In particular, we can assume that k ≤ n/10, or else α−1 ≫ n, and so α ≪ 1/n as
required.

Now let’s see what Lemma 5 tells us, applied to Ak ⊆ Vk. By maximality of k,
the second condition of Lemma 5 can’t hold: otherwise we could let Vk+1 = V ′ and
Ak+1 = A− x. Therefore the first condition must hold, and so

|Ak| = αk |Vk| ≪ |Vk|1/2 .

Hence

p−n/4 ≤ α ≤ αk ≪ |Vk|−1/2
.

But by induction |Vk| ≥ pn−k ≥ p9n/10, and hence

p−n/4 ≪ p−9n/20,

which is a contradiction for large enough n. □

To complete the proof of Meshulam’s theorem, or Roth’s theorem in Fn
p , it re-

mains to prove Lemma 5. The strategy is the following:

(1) Write the difference between the actual number of 3APs in A and the
‘expected’ number of 3APs in a set of the same density as an inner product
involving 1A and the balanced function 1A − α.

(2) If A has no non-trivial 3APs, and is not too large, then this difference is
large in absolute value.

(3) Apply Parseval’s identity, to convert this inner product into one involving
the Fourier transform of 1A and 1A − α.

(4) Deduce from the largeness of this inner product that there is some γ ̸= 1
at which the Fourier transform of 1A − α is large.

(5) Show that if V ′ is the subspace which is orthogonal to γ, which has codi-
mension 1, then the large Fourier coefficient from the previous point creates
a density increment on some coset of V ′.

Proof of Lemma 5. We will think of V as just Fn
p , and all Fourier transforms, sums,

and so on, will be taken over this group. The number of 3APs in A can be written
as ∑

x,y,z∈A

1x+y=2z =
∑

x,y∈A

∑
w∈2·A

1x+y=w =
∑

w∈2·A
1A ∗ 1A(w) = ⟨1A ∗ 1A, 12·A⟩.

Here we are using the obvious notation 2 ·A = {2a : a ∈ A} – note that since Fn
p is

a group of odd order g 7→ 2g is a bijection, and in particular |2 ·A| = |A|.
We will now compare this to the amount of 3APs we ‘expect’ to see in A. The

most convenient way to do this is to consider the same inner product with 1A
replaced by α1G – that is, the constant function on Fn

p which maps every element
to α. This can be viewed as the first-order approximation to A, which agrees with
it in density, in the sense that

∑
x 1A(x) = |A| = αpn =

∑
x α1G(x). As a constant
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function on the entirety of G, it is much easier to count 3APs weighted by this
function, even if we only replace one copy of 1A by α1G:

⟨α1G ∗ 1A, 12·A⟩ = α⟨1G ∗ 1A, 12·A⟩
= α⟨1G, 12·A ◦ 1A⟩

= α
∑
x∈G

 ∑
a,b∈A

12a−b=x


= α |A|2

= α3p2n.

This is, recall, the number of 3APs we expect from A if it were a random set of
density α. To compare the difference between the actual count and the expected
count, we take the difference: let fA = 1A −α1G be the ‘balanced function’. Then,
using the fact that the number of 3APs in A is just |A| (since only the trivial ones
with d = 0 appear), we have

⟨fA ∗ 1A, 12·A⟩ = ⟨1A ∗ 1A, 12·A⟩ − ⟨α1G ∗ 1A, 12·A⟩ = |A| − α3p2n = αpn(1− α2N).

In particular, if the first case does not hold, then 1− α2N ≤ − 1
2α

2pn, and so

|⟨fA ∗ 1A, 12·A⟩| ≥ 1
2α

3p2n.

We now write the left-hand side using Fourier analysis: Parseval’s idenity and the
fact that the Fourier transform diagonalises convolution yields

⟨fA ∗ 1A, 12·A⟩ = ⟨f̂A · 1̂A, 1̂2·A⟩.

Writing out the definition of the inner product and using the triangle inequality,
we therefore get

(1) E
γ

∣∣∣f̂A(γ)∣∣∣ ∣∣∣1̂A(γ)∣∣∣ ∣∣∣1̂2·A(γ)∣∣∣ ≥ 1
2α

3p2n.

We now make two observations about the left-hand side: the first is that the trivial
character γ = 1 makes no contribution, since

f̂A(1) =
∑
x

fA(x) =
∑
x

1A(x)− α1G(x) = |A| − αpn = 0.

Secondly, we use the Cauchy-Schwarz inequality and Parseval’s identity to see that

E
γ

∣∣∣1̂A(γ)∣∣∣ ∣∣∣1̂2·A(γ)∣∣∣ ≤ (E
γ

∣∣∣1̂A(γ)∣∣∣2)1/2(
E
γ

∣∣∣1̂2·A(γ)∣∣∣2)1/2

= ∥1A∥2∥12·A∥2

= |A| .
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Using this and (1) we have

sup
γ ̸=1

∣∣∣f̂A(γ)∣∣∣αpn ≥ sup
γ ̸=1

∣∣∣f̂A(γ)∣∣∣E
γ

∣∣∣1̂A(γ)∣∣∣ ∣∣∣1̂2·A(γ)∣∣∣
≥E

γ ̸=1

∣∣∣f̂A(γ)∣∣∣ ∣∣∣1̂A(γ)∣∣∣ ∣∣∣1̂2·A(γ)∣∣∣
≥ 1

2α
3p2n.

In particular, there must exist some γ ̸= 1 such that |f̂A(γ)| ≥ 1
2α

2pn. (Compare

this to the trivial upper bound |f̂A(γ)| ≤ 2αpn from the triangle inequality.)
Let V ′ be the subspace which annihilates γ – that is, the set of all x ∈ Fn

p

such that γ · x = 0 (recalling our identification of Fn
p with F̂n

p , this is equivalent to
γ(x) = 1 viewing γ as a character). This is a subspace of codimension 1. The key
observation is that γ (viewed as a character) is now constant on cosets of V ′ – if
the cosets of V ′ are v1 + V ′, . . . , vp + V ′ and if x ∈ vi + V ′ then γ(x) = γ(vi).

We know that |f̂A(γ)| ≥ α2pn/2. To see what this has to do with V ′, we write
out the Fourier transform as follows. Let V ′

1 , . . . , V
′
p be the cosets of V ′. Then

f̂A(γ) =
∑
x∈A

(1A(x)− α1G(x))γ(x)

=

p∑
i=1

∑
x∈V ′

i

(1A(x)− α1G(x))γ(x)


=

p∑
i=1

γ(vi)
(
|A ∩ V ′

i | − αpn−1
)
.

We want to show that there exists some i such that |A ∩ V ′
i | − αpn−1 ≥ 1

4α
2pn−1.

One immediate problem is that we only know about the absolute value of f̂A(γ).
The second is that the sum above is a sum of complex values, so extracting infor-
mation about individual summands from a bound on the sum is difficult. We will
now show how to get around such difficulties.

Let c ∈ C be such that cf̂A(γ) = |f̂A(γ)| (so |c| = 1), and consider

⟨fA, cγ + 1⟩ = cf̂A(γ) +
∑
x

fA(x) =
∣∣∣f̂A(γ)∣∣∣ .

In particular, this inner product is a non-negative real number. The function x 7→
cγ(x)+1 is constant on cosets of V ′ - say, takes the values x1, . . . , xp. So if we split
the inner product into a sum over V ′

i for 1 ≤ i ≤ p as above, then

⟨fA, cγ + 1⟩ =
∑
i

xi

(
|A ∩ V ′

i | − αpn−1
)
.

Since the left-hand side is a non-negative real value, and is ≥ 1
2α

2pn, we have∑
i

Re(xi)
(
|A ∩ V ′

i | − αpn−1
)
≥ 1

2α
2pn.
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By averaging (which is now possible since this is a sum of real numbers), there
exists i such that

Re(xi)(|A ∩ V ′
i | − αpn−1) ≥ 1

2αp
n−1.

Finally, we note that Re(xi) ∈ [0, 2], and so we’re done. (Note how vital it was that
we introduced the +1, or else Re(xi) ∈ [−1, 1], and we might have found a density
decrement instead of an increment.) □

A lot of the above argument makes sense in any finite abelian group, such as
Z/NZ. Where we made essential use of the fact that we’re working in Fn

p was saying
that there is a subspace V ′, which is large, on which γ(x) = 1. This is the utility of
having plentiful subspaces around, which can exactly annihilate any character. In
Z/NZ, this is no longer possible – for example, if γ : x 7→ e2πix/N , then γ(x) = 1 if
and only if x = 0. So we cannot hope to find a large subgroup on which γ vanishes
exactly.

We will instead pass to the subset of those x where γ(x) ≈ 1 – that is, where
|γ(x)− 1| ≤ ϵ for some small ϵ > 0. With this choice, for suitable ϵ, something
similar to the previous argument can be made to work for Z/NZ – but the details
become more complicated, since these sets are no longer closed under addition.



CHAPTER 3

Lectures Three and Four

4. Bohr sets

In this section we will define Bohr sets, which are a generalisation of subspaces
that exist for any finite abelian group, and explore their properties. In this section
G is an arbitrary finite abelian group, of order N .

Definition 2 (Bohr set). Let Γ ⊂ Ĝ and ρ ∈ [0, 2]. The Bohr set with
frequency set Γ and width ρ is the set

Bohr(Γ; ρ) = {x ∈ G : |1− γ(x)| ≤ ρ for all γ ∈ Γ}.
If λ > 0 and B = Bohr(Γ; ρ) is a Bohr set then we will write Bλ for
Bohr(Γ;λρ), which we call B dilated by λ. The size of Γ is called the
rank of the Bohr set.

Important: The frequency set Γ and width ρ is not uniquely determined
by the corresponding Bohr set! (For example, Bohr(Γ; 2) = G for any Γ.)
Formally, it would be most proper to always talk of triples (Bohr(Γ; ρ),Γ, ρ),
but this notation is very cumbersome. Thus we adopt the convention that
whenever we refer to a ‘Bohr set’ B, we are also implicitly fixing some Γ
and ρ such that B = Bohr(Γ; ρ).

Before giving some examples, we note some basic properties.

(1) A Bohr set B is always a symmetric set (i.e. B = −B) which contains 0.

Indeed, this is immediate from the fact that γ(−x) = γ(x) and γ(0) = 1

for any γ ∈ Ĝ.
(2) Bohr sets are decreasing in frequency sets, in that if Γ ⊇ Γ′ then Bohr(Γ; ρ) ⊆

Bohr(Γ′; ρ).
(3) Bohr sets are increasing in width, in that if ρ ≤ ρ′ then Bohr(Γ; ρ) ⊆

Bohr(Γ; ρ′).
(4)

Bohr(Γ; ρ1) + Bohr(Γ; ρ2) ⊆ Bohr(Γ; ρ1 + ρ2).

This follows from the triangle inequality, since

|1− γ(x1 + x2)| = |γ(−x1)− γ(x2)| ≤ |1− γ(x1)|+ |1− γ(x2)| .

In particular, B +Bλ ⊆ B1+λ.

One should think of the Bohr sets with fixed frequency set Γ as a family of
neighbourhoods of the origin – where we begin with Bohr(Γ; 0) and expand outwards
until eventually Bohr(Γ; 2) = G.

14
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A Bohr set of rank d is the inverse image of a cube of dimension d: if we consider
the map from G → Cd where x 7→ (γ(x))γ∈Γ then Bohr(Γ; ρ) is the inverse image of
the cube of side-length 2ρ centred at 1. This inverse map is not a homomorphism
or anything particularly well-behaved, but still this view of a Bohr set of rank d as
the pullback of a d-dimensional cube provides useful intuition.

Examples. Before giving some concrete examples, it is convenient to note the
following estimate. Recall that e(x) = e2πix. We note that if θ ̸∈ Z then

|1− e(θ)| =
∣∣e−πiθ − eπiθ

∣∣ = 2 |sin(πθ)| .
We now recall Jordan’s inequality:

2
π |x| ≤ |sin(x)| ≤ |x| ,

valid for any x ∈ (−π/2, π/2]. In particular, if ∥θ∥ denotes the distance of θ from
the nearest integer, then

4∥θ∥ ≤ |1− e(θ)| ≤ 2π∥θ∥.

For our first example, recall that if G = Fn
p then the group of characters Ĝ

can be identified with Fn
p itself, where γ ∈ Fn

p is identified with the character
x 7→ e(γ ·x/p). In particular, if ρ < 4/p, then |1− γ(x)| ≤ ρ implies ∥γ ·x/p∥ < 1/p.
But γ · x ∈ {0, . . . , p− 1}, and so the only way this is possible is if γ · x = 0. That
is, provided ρ < 4/p, we have shown that, for any Γ ⊂ Fn

p ,

Bohr(Γ; ρ) = {x ∈ Fn
p : γ · x = 0 for all γ ∈ Γ}.

That is, the Bohr set with frequency set Γ is precisely the subspace of Fn
p which

is orthogonal to all γ ∈ Γ. This is very convenient, and goes a long way towards
explaining why proofs over Fn

p are much more straightforward: provided the width
is sufficiently small (less than some absolute constant depending only on p), Bohr
sets in Fn

p are exactly subspaces (and vice versa). In particular they are closed
under addition.

The advantage of Bohr sets in general is that they offer an analogue for ‘sub-
spaces’, but they exist for any group, even those without subgroups. This is a good
general heuristic picture to have in mind when thinking about Bohr sets: “A Bohr
set of rank d plays the same role as a subspace of codimension ≤ d.”

Let’s consider what Bohr sets look like in Z/NZ., when N is prime. Again, the
group of characters can be identified with Z/NZ itself, with γ ∈ {0, . . . , N − 1}
identified with the character x 7→ e(xγ/N). Consider first the case of rank 1. It
is easy to see that Bohr(Γ; ρ) is just an arithmetic progression, centred at 0, of
length ≈ ρN – for example, when Γ consists of the character γ : x 7→ e(x/N), then
|1− γ(x)| ≈ x/N , and so x ∈ Bohr(Γ; ρ) if and only if |x| ≪ ρN . Changing to a
different just dilates this interval, which is another arithmetic progression of the
same length. Thus: “Bohr sets in Z/NZ of rank 1 are exactly those symmetric
arithmetic progressions containing 0.”

Bohr sets of higher rank are a little more mysterious, and to understand their
structure better we will need some tools from the geometry of numbers. We will
explore this further in Chapter 4.

We now return to Bohr sets in general, over an arbitrary finite abelian group.
The first basic question is: how large are Bohr sets? Heuristically, if γ(x) were
distributed equally over the unit circle, then |1− γ(x)| ≤ ρ would be true with
‘probability’ ≈ ρ. Assuming this event is independent for each γ ∈ Γ, we might



16 THOMAS F. BLOOM

guess that the proportion of x ∈ G that belong to a given Bohr set B of rank d is
roughly ≈ ρd, and so |B| ≈ ρdN .

Note that this heuristic also agrees, up to a constant, with what we know about
Bohr sets in Fn

p : if ρ < 4/p then B = Bohr(Γ; ρ) is the subspace of Fn
p which

annihilates Γ, which has size p−d′
N , where d′ ≤ |Γ| is the number of linearly

independent elements in Γ. In particular, if Γ is linearly independent and ρ ≈ 4/p,
then |B| = p−dN ≈ (ρ/4)dN .

Of course, this heuristic does not always work – for one thing, the distribution
of γ(x) will not be independent, especially if e.g. both γ and 2γ are elements of Γ
(which can already be seen in the Fn

p subspace case, where d′ may be much smaller
than d). We can show, however, that this heuristic does work for providing a lower
bound on the size of B.

The same idea also shows that dilating a Bohr set at worst reduces the size of
the set by a factor exponential in d. This agrees with the heuristic that a Bohr set
of d behaves like a cube in dimension d.

Lemma 6. If B is a Bohr set of rank d and width ρ ∈ (0, 1] then

|B| ≥ (ρ/8)dN.

Furthermore, ∣∣B1/2

∣∣ ≥ 8−d |B| .
In particular, for any 0 < δ < 1, we have

|Bδ| ≥ (δ/2)3d |B| .

Proof. Let B = Bohr(Γ; ρ). We can cover the unit circle in C by at most ⌈2π/ρ⌉
many circles of radius ρ/2. In particular, G is covered by at most ⌈2π/ρ⌉d many
sets of the shape

{x ∈ G : γ(x) ∈ Dγ for all γ ∈ Γ},
where each Dγ is a circle of radius ρ/2 (possibly different circles for different γ). If
X is any such set, then X −X ⊆ B by the triangle inequality: suppose that γ ∈ Γ
and x1, x2 ∈ X, say γ(x1) and γ(x2) are both in the circle with centre a and radius
ρ/2. Then

|1− γ(x1 − x2)| = |γ(x1)− γ(x2)| ≤ |a− γ(x1)|+ |a− γ(x2)| ≤ ρ.

In particular, |X| ≤ |B|. It follows that

N ≤ ⌈2π/ρ⌉d |B| ,
and the claim follows, since ⌈x⌉ ≤ x + 1 ≤ (1 + 1/2π)x for any x ≥ 2π, and
2π + 1 ≤ 8.

The second bound is proved similarly, except that now we cover just the part of
the unit circle which is distance ≤ ρ from 1. This is covered by at most 8 circles of
radius ρ/4, and hence B is covered by at most 8d many sets of the shape

X ′ = {x ∈ G : γ(x) ∈ Dγ for all γ ∈ Γ},
where eachDγ is a circle of radius ρ/4. As before, we have that each suchX ′ satisfies
X ′ −X ′ ⊆ B1/2, and so |X ′| ≤

∣∣B1/2

∣∣, and thus |B| ≤ 8d
∣∣B1/2

∣∣ as required.
To deduce the third bound, let k ≥ 1 be such that 2−k ≤ δ < 2−k+1. By k

applications of the second bound,

|Bδ| ≥
∣∣B1/2k

∣∣ ≥ 2−3kd |B| ≥ (δ/2)3d |B|
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as required. □

Bohr sets are, in general, not even approximately group-like, and may grow expo-
nentially under addition. Indeed, recall that Bohr(Γ; ρ)+Bohr(Γ; ρ) ⊆ Bohr(Γ; 2ρ).
If this containment is sharp, and we expect a Bohr set of rank d and radius ρ to
have size ≈ ρdN , then this suggests that |B +B| ≈ 2d |B| – not so much a problem
for d = O(1), but as d → ∞ this becomes very bad indeed!

Thus Bohr sets are, in general, not even approximately group-like. This quickly
leads to disaster when naively trying to do Fourier analysis. We can salvage some-
thing, however. Note that if B is a Bohr set of rank d then, for any λ > 0, the above
heuristic suggests that B + Bλ ≈ B1+λ ≈ (1 + λ)d |B|. In particular, if λ ≈ 1/d,
then this doubling constant becomes very small, on the order of 1 + o(1), much
more group-like!

The slogan here, then, is that a Bohr set B behaves like a group, and is ap-
proximately closed under addition, provided we only translate by elements in some
narrow dilate BO(1/d). (As a sanity check, see what happens in Fn

p - as soon as
the width drops below some absolute constant then the Bohr set doesn’t change,
and so any dilate of B is B again, and this is just saying that subspaces are closed
under addition.)

Unfortunately, even this is not true in complete generality – basically because
the heuristic that |B| ≈ ρdN is not definitely true, and it may be that |B1+λ| is
much larger than we expect. Fortunately, this is not typical behaviour, and an
ingenious argument of Bourgain shows that every Bohr set is ‘close’ to one that
behaves how we’d expect. We first formally define what kind of behaviour we’re
after: a kind of continuity of size, in that small changes in the width should not
change the size too much.

Definition 3 (Regularitya). A Bohr set B of rank d is regular if for all
0 ≤ δ ≤ 1/200d we have

|B1+δ| ≤ (1 + 200dδ) |B|
and

|B1−δ| ≥ (1− 200dδ) |B| .

aThe constant 200 here is fairly arbitrary – smaller constants also work, but the proofs

become messier. The point is that 200 is a fixed, absolute, constant.

For example, if B is regular, then in particular, for any 0 ≤ δ ≤ ϵ/200d, we have

|B +Bδ| ≤ |B1+δ| ≤ (1 + 200dδ) |B| ≤ (1 + ϵ) |B| .

Thus, as discussed above, regular Bohr sets have small sumset with their (narrow)
dilates.

Not all Bohr sets are regular! Here’s a simple example. Let Γ ⊆ Fn
2 be some

linearly independent set of size d, and consider the Bohr set in Fn
2 with frequency

set Γ and width 2 − 1
1000d . Since the characters in Ĝ only take the values ±1, if

|1− γ(x)| < 2 then γ(x) = 1, and so B is the subspace of characters orthogonal to Γ,
which has 2n−d. On the other hand, if δ = 1/200d, then since (1+δ)(2−1/200d) ≥ 2
we see that B1+δ = Fn

2 , which has size 2n, and so |B1+δ| ≥ 2d |B|. A slight change
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in the width has resulted in an exponential factor increase in the size. Similar
examples can be given for any Fn

p and, with a little more work, for Z/NZ.
It’s clear what’s gone wrong here – we maliciously chose our initial width ρ to

be very close to some significant threshold, and then dilating it by a factor of 1+ δ
pushed us over this threshold, causing a massive jump in size. The key observation
is that this malicious choice can be undone if we’re allowed to tweak the initial
width slightly.

Bourgain showed that this is always true – every Bohr set can be turned into a
regular Bohr set by dilating the initial width. A slogan form of this result is that
“bad choices for the width are avoidable”.

Lemma 7 (Bourgain’s Regularity Lemma). For any Bohr set B there exists λ ∈
[ 12 , 1] such that Bλ is regular.

In the proof of Lemma 7, we will need the following charming elementary result.
(This lemma is probably folklore, but I first learnt of it from an expository note on
Bourgain’s result by Ben Green [5].)

Lemma 8. Let I be a collection of open intervals in R whose union contains a
closed interval of length λ. There is a finite collection I1, . . . , In ∈ I of disjoint
intervals with total length at least λ/2.

Proof. By compactness, there is a finite subset of intervals from I that contains
the same closed interval of length λ. Let I ′ be a minimal such set. Fix x ∈ R, and
suppose that there are at least two intervals in I ′ containing x. Let I = (aI , bI)
and J = (aJ , bJ) be two such intervals, chosen such that aI < x is minimal and
bJ > x is maximal. In particular, if (a, b) ∈ I also contains x, then a ≥ aI and
b ≤ bJ , and so (a, b) ⊆ I ∪ J . By the minimality of I ′, we deduce that (a, b) ̸∈ I ′,
and so x is contained in at most two different intervals in I ′.

If we list I as I1, . . . , In, where Ii = (ai, bi), ordered such that a1 ≤ a2 ≤ · · · ≤
an, then we must have

a1 ≤ a2 ≤ b1 ≤ a3 ≤ b2 ≤ a4 ≤ · · · ≤ bk−1 ≤ bk.

In particular the odd intervals I1 ∪ I3 ∪ · · · are all disjoint, and so are all the even
intervals I2 ∪ I4 ∪ · · · . By the pigeonhole principle at least one of them must have
measure at least λ/2. □

We now prove Bourgain’s regularity lemma. The basic idea is the following:
regularity roughly says that perturbing the width by an (additive) factor of O(1/d)
does not change the size by more than O(1). If we have repeated failures of regu-
larity for every λ ∈ [1/2, 1], then we can make ≈ d many steps (each of size O(1/d))
going from width 1/2 to width 1, each time increasing the size of the Bohr set by
a multiplicative factor. But this means that |B| ≥ Cd|B1/2| which, for a suitably

large constant C > 8, contradicts the fact that |B| ≤ 8d|B1/2| from Lemma 6. The
previous covering lemma, and a careful choice of initial constants, allows us to carry
out this procedure and get the desired contradiction.

Proof of Lemma 7. Let B be the Bohr set Bohr(Γ; ρ). To make things more visible,
let B(δ) = Bδ = Bohr(Γ; δρ).

Suppose that the lemma is false. This means that for every λ ∈ [ 12 , 1] there exists

some 0 < δλ ≤ 1
200d such that either

|B((1 + δλ)λ)| > (1 + 200δλd) |B(λ)| .
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or

|B((1− δλ)λ)| < (1− 200δλd) |B(λ)| .
In either case, we have

|B((1 + δλ)λ)| > (1 + 100δλd) |B((1− δλ)λ)| .

Consider the collection of intervals of the shape Iλ = ((1 − 2δλ)λ, (1 + 2δλ)λ) for
all λ ∈ [ 12 + 1

100d , 1 −
1

100d ]. By Lemma 8, there is some finite set {λ1 < · · · < λk}
such that the corresponding Iλi

are all disjoint and have total measure at least
1/4− 1/100d ≥ 1/5, and so ∑

4δλiλi ≥ 1/5,

and so ∑
δλi

≥ 1/20.

Since (1− δλ1)λ1 ≥ 1/2 and (1 + δλk
)λk ≤ 1 we have

|B(1/2)|
|B|

≤ |B((1− δλ1
)λ1)|

|B((1 + δλk
)λk)|

.

We further note that, since the disjointness of the intervals above implies that
(1 + δλi

)λi ≤ (1− δλi+1
)λi+1, we have∣∣B((1− δλi+1)λi+1)

∣∣
|B((1 + δλi)λi)|

≥ 1.

Therefore, using our initial assumption,

|B(1/2)|
|B|

≤ |B((1− δλ1
)λ1)|

|B((1 + δλk
)λk)|

≤
k∏

i=1

|B((1− δλi
)λi)|

|B((1 + δλi
)λi)|

<

k∏
i=1

(1 + 100δλi
d)−1.

Using the inequality 1 + x ≥ ex/2, valid for all 0 ≤ x ≤ 1, this implies

|B(1/2)|
|B|

≤ exp(− 50
20d)) < 8−d,

say, since 5/2 ≥ log 8. By Corollary 6, however, the left hand side is at least 8−d

and we have a contradiction. □

The following lemmas indicate how regularity of Bohr sets will be exploited. It
allows us to remove convolutions by a narrow dilate of B (with a small error).

Lemma 9. If B is a regular Bohr set of rank d and B′ ⊆ Bδ, with 0 < δ ≤ 1/200d,
then for any function f supported on B satisfying |f(x)| ≤ M for all x ∈ B,

⟨f, 1B ∗ 1B′⟩ = ⟨f, 1B⟩ |B′|+O(δdM |B| |B′|).

In particular, if A ⊆ B, then

⟨1A, 1B ∗ 1B′⟩ = |A| |B′|+O(δd |B| |B′|).
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Proof. We have, since f is supported on B,

⟨f, 1B ∗ 1B′⟩ − ⟨f, 1B⟩ |B′| =
∑
x∈B

f(x) (1B ∗ 1B′(x)− |B′|) .

By the triangle inequality, this is at most

M
∑
x∈B

|1B ∗ 1B′(x)− |B′|| = M
∑
x∈B

∣∣∣∣∣∣
∑
y∈B′

(1B(x− y)− 1)

∣∣∣∣∣∣
≤ M

∑
y∈B′

∑
x∈B

|1B(x− y)− 1|

= M
∑
y∈B′

|B\(B + y)|.

We now note that B1−δ ⊆ B + y – indeed, if z ∈ B1−δ and y ∈ Bδ then z − y ∈
B1−δ +Bδ ⊆ B. Therefore, by the definition of regularity,

|B\(B + y)| ≤ |B\B1−δ| ≪ δd |B| ,

and the proof is complete. □

5. Bourgain’s bound for Roth’s theorem

We will now prove Bourgain’s bound for sets without three-term arithmetic
progressions. The overall strategy is to mimic the proof we did in Fn

p , but with
Bohr sets playing the role of subspaces. The main complication is that since Bohr
sets are not closed under addition by themselves, but are approximately closed
under addition by a narrow dilate (at least, if the Bohr sets are regular), we will
have to work with several widths of the same Bohr set simultaneously.

Our goal is the following result.

Theorem 5 (Bourgain 1999). If A ⊂ {1, . . . , N} has no non-trivial three-term
arithmetic progressions then

|A| ≪
(
log logN

logN

)1/2

N.

In particular, |A| /N → 0 as N → ∞.

An immediate problem if we try to prove this theorem is that {1, . . . , N} is not
a group! Everything we’ve developed in this chapter has been for finite abelian
groups. So we will in fact prove the following.

Theorem 6 (Bourgain 1999). Let G be a finite abelian group of odd order N . If
A ⊆ G has no non-trivial three-term arithmetic progressions then

|A| ≪
(
log logN

logN

)1/2

N.

(Note that this also includes the case when G = Fn
p with p ≥ 3 an odd prime,

but of course in this case we have already proved the much better bound |A| ≪
N/ logN .)

Even though {1, . . . , N} is not a group, there is a neat trick that allows us to
deduce Theorem 5 from Theorem 6.
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Proof of Theorem 5 assuming Theorem 6. Suppose A ⊆ {1, . . . , N} contains no
non-trivial 3APs. Let M = 2N − 1. Suppose that A had a non-trivial 3AP modulo
M . This means that there are distinct x, y, z ∈ A such that x+ y ≡ 2z (mod M).
But since 1 ≤ x, y, z ∈ N , we have

−M < 2− 2N ≤ x+ y − 2z ≤ 2N − 2 < M.

Therefore x + y − 2z ≡ 0 (mod M) implies x + y − 2z = 0, and we have found
a genuine non-trivial 3AP in A, which is a contradiction. Therefore A, viewed as
a subset of Z/MZ, also has no non-trivial 3APs, and so Theorem 6 applies with
G = Z/MZ. Therefore

|A| ≪
(
log logM

logM

)1/2

M ≪
(
log logN

logN

)1/2

N.

□

As for the proof of Meshulam’s theorem, we will first state the density increment
lemma we will use, and then show how Theorem 6 follows from it.

Lemma 10. Let B be a regular Bohr set of rank d and width ρ. Let A ⊆ B be
a subset of density α = |A| / |B|. Suppose that A has no non-trivial three-term
arithmetic progressions. Then there is a constant c > 0 such that either

(1) |A| ≪ (d/α)O(d) |B|1/2, or
(2) there is a regular Bohr set B′ ⊆ B of rank ≤ d+1 and width ≫ ρ(α/d)O(1)

and x such that

|(A− x) ∩B′|
|B′|

≥ (1 + cα)α.

We will now prove Theorem 6 by repeated applications of Lemma 10.

Proof. Let A ⊆ G be a fixed set of density α > 0 without non-trivial 3APs. We
can assume, without loss of generality, that α ≥ 1/ logN , or else we are done
immediately.

Let k ≥ 0 be maximal such that the following holds. There is a sequence of sets
A0, . . . , Ak and associated Bohr sets B0, . . . , Bk, with ranks d0, . . . , dk and widths
ρ0 ≥ · · · ≥ ρk, such that

(1) A0 = A and B0 = G, with d0 = 1 and ρ0 = 1 (taking the frequency set to
be just the trivial character, for example),

(2) Ai ⊆ Bi,
(3) Ai has no non-trivial 3APs,
(4) if αi = |Ai| / |Bi| then

αi+1 ≥ (1 + cαi)αi,

where c > 0 is the constant from Lemma 10,
(5) di ≤ i+ 1, and
(6) ρi+1 ≫ (α/di)

O(1)ρi.

Just as in the proof of Theorem 4, part (4) implies that k ≪ α−1.
We now apply Lemma 10 to Ak ⊆ Bk. By maximality of k, the second condition

of Lemma 10 can’t hold, and so (since dk ≤ k + 1 ≪ α−1)

1

logN
≤ α ≤ αk ≪ (dk/α)

O(dk) |Bk|−1/2 ≪ (1/α)O(α−1) |Bk|−1/2
.
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We now compare this to our lower bound for |Bk|. Since the rank of each Bohr set
is ≤ k + 1 ≪ α−1, we have for 0 ≤ i < k, the width relationship

ρi+1 ≫ αO(1)ρi,

and so ρk ≫ αO(dk) ≫ αO(α−1). By our size lower bound for Bohr sets, Lemma 6,
we have

|Bk| ≥ (ρk/8)
dkN ≫ αO(α−2)N.

Therefore,
1

logN
≪ α−O(α−1) |Bk|−1/2 ≪ α−O(α−2)N−1/2.

Rearranging and taking logarithms, this implies

α−2 log(1/α) ≫ logN.

Since we are assuming that α ≥ 1/ logN , we have log(1/α) ≪ log logN , and so

α−2 ≫ logN

log logN
,

and so α ≪ (log logN/ logN)1/2 as required. □

Before we prove the density increment lemma Lemma 10, we need to prove two
supporting technical lemmas. These are to compensate for the fact that Bohr sets
are not closed under addition, and we need to work with narrower Bohr sets instead
and use regularity.

The first of our two supporting lemmas will be used to replace the fact that, in
Fn
p , we could exactly work out the number of 3APs when one of the copies of A was

replaced by G: namely that ⟨1G ∗ 1A, 12·A⟩ = α2 |G|2. This is no longer possible if
we replace G by some Bohr set. We will show that, using regularity, we can recover
a suitable lower bound for this count, if instead of replacing A we replace 2 · A by
2 ·Bδ, provided δ is sufficiently small – or at least, either this is possible, or else we
have a density increment anyway.

Note that if A is a random subset of B of density α, then we expect for a Bohr
set B′, we have ⟨1A ∗ 1A, 1B′⟩ ≈ α2⟨1B ∗ 1B , 1B′⟩. Provided B is regular and B′ is
contained in some suitable dilate of B, we also have ⟨1B ∗ 1B , 1B′⟩ ≈ |B| |B′| (since
1B is approximately invariant under translations by B′). The following lemma says
that (with B′ replaced by 2 ·Bδ) either this approximation is true as a lower bound,
or else A has a strong density increment.

Lemma 11. Let B be a regular Bohr set of rank d and width ρ. Suppose that
δ ≤ c0α/d for some sufficiently small constant c0 > 0 such that Bδ is also regular.
Let A ⊆ B with density α = |A| / |B|. Either

(1) (many ‘progressions’) ⟨1A ∗ 1A, 12·Bδ
⟩ ≥ 1

2α
2 |B| |Bδ| or

(2) (density increment) there is a regular Bohr set B′ of rank ≤ d and width
≫ δ2ρ and an x such that

|(A− x) ∩B′|
|B′|

≥ (1 + 1/256)α.

Proof. If the first condition fails then

1
2α

2 |B| |Bδ| > ⟨1A ∗ 1A, 12·Bδ
⟩ = ⟨1A, 12·Bδ

◦ 1A⟩.
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This means that there can’t be too many elements of A where 12·Bδ
◦ 1A is large.

More precisely, decompose A = Alarge ⊔Asmall, where

Alarge = {x ∈ A : 12·Bδ
◦ 1A(x) > 3

4α |Bδ|}.
We have

1
2α

2 |B| |Bδ| > ⟨1A, 12·Bδ
◦ 1A⟩ ≥ 3

4α |Bδ| |Alarge| ,
and so |Alarge| < 2

3 |A|, and hence |Asmall| ≥ 1
3 |A|.

So we know that Asmall is large, so there are many elements in A where 12·Bδ
◦1A

is small. We now show how to upgrade this to find many elements in B where this
convolution is small. Let c ∈ [1/2, 1] be such that Bcδ2 is regular. The key is to
note that, by regularity of Bδ, for any z ∈ Bcδ2 ,

|(2 ·Bδ − 2z)\2 ·Bδ| = |(Bδ − z)\Bδ| ≤
∣∣B(1+cδ)δ\Bδ

∣∣≪ δd |Bδ| ,
and hence for any y ∈ Asmall we have

12·Bδ
◦ 1A(y + 2z) = |(2 ·Bδ − 2z) ∩ (A+ y)|

≤ |2 ·Bδ ∩ (A+ y)|+O(δd |Bδ|)
= 12·Bδ

◦ 1A(y) +O(δd |Bδ|).

In particular, for any x ∈ Asmall + 2 ·Bcδ2 , since δ ≤ c0α/d, provided c0 is a small
enough, we have

12·Bδ
◦ 1A(x) < 7

8α |Bδ| .
We therefore let Bsmall = B ∩ (Asmall + 2 · Bcδ2). This is a subset of B where
12·Bδ

◦ 1A is small (as is Asmall, but Bsmall is probably much larger).
How large is Bsmall? We don’t know, but we will show that whether Bsmall is

large or small, we can obtain a density increment.
Case 1: Suppose that |Bsmall| < 1

16 |B|. In this case we consider the convolution
⟨1Asmall

∗12·Bcδ2
, 1B⟩. By regularity, and noting that 2 ·Bcδ2 ⊆ Bcδ2 +Bcδ2 ⊆ B2cδ2 ,

⟨1Asmall
∗ 12·Bcδ2

, 1B⟩ = ⟨1Asmall
, 1B ∗ 12·Bcδ2

⟩ = |Asmall| |Bcδ2 |+O(δ2d |B| |Bcδ2 |).

(Note that the adjoint property would suggest a ◦12·Bcδ2
here in the second expres-

sion, but since Bohr sets are symmetric, it is the same whether we write ◦ or ∗ here!
This kind of substitution, between ◦ and ∗, which are equivalent for symmetric sets,
will doubtless happen again.)

Provided δ is small enough, this is at least (recall that |Asmall| ≥ 1
3 |A|)

|Asmall| |Bcδ2 | − 1
8 |A| |Bcδ2 | ≥ 1

8 |A| |Bcδ2 | .
Since 1Asmall

∗ 12·Bcδ2
is supported, inside B, on Bsmall, we have

⟨1Asmall
∗ 12·Bcδ2

, 1B⟩ ≤ |Bsmall|max
x

(1Asmall
∗ 12·Bcδ2

(x))

≤ 1
16 |B|max

x
(1A ∗ 12·Bcδ2

(x)).

Comparing the upper and lower bounds, we deduce that

max
x

|(A− x) ∩ 2 ·Bcδ2 | = max
x

1A ∗ 12·Bcδ2
(x) ≥ 2α |Bcδ2 | ,

and we have a density increment (even better than we needed), with B′ = 2 ·Bcδ2 .
Here we are using the observation that if B = Bohr(Γ; ρ) is a Bohr set then 2 ·B is
also a Bohr set of the same rank and width:

2 · Bohr(Γ; ρ) = Bohr(2−1Γ; ρ),
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where
2−1Γ = {x 7→ γ(2−1x) : γ ∈ Γ}.

Here we use 2−1x to denote the inverse homomorphism to x 7→ 2x, which exists
since G is a finite group of odd order, so x 7→ 2x is an injective, and hence bijective,
homomorphism. Furthermore, if B is regular then 2 · B will also be regular, since
|(2 ·B)1+δ| = |2 ·B1+δ| = |B1+δ|.

Case 2: Suppose that |Bsmall| ≥ 1
16 |B|. In this case we consider the inner

product ⟨12·Bδ
◦ 1A, 1B⟩. As above, by regularity, provided δ is sufficiently small,

we have
⟨12·Bδ

◦ 1A, 1B⟩ ≥ (1− 1
256 ) |A| |Bδ| .

For an upper bound, we recall that if x ∈ Bsmall then 12·Bδ
◦1A(x) ≤ 7

8α |Bδ|. Also,
for any x ∈ B, either we have a density increment (with B′ = 2 ·Bδ), or

12·Bδ
◦ 1A(x) = |(A+ x) ∩ 2 ·Bδ| ≤ (1 + 1/256)α |Bδ| .

Combining these upper bounds, we deduce that

⟨12·Bδ
◦ 1A, 1B⟩ ≤ 7

8α |Bδ| |Bsmall|+ (1 + 1/256)α |Bδ| (|B| − |Bsmall|).
Comparing our lower and upper bounds and simplifying yields

( 18 + 1
256 ) |Bsmall| ≤ 1

128 |B| ,
which contradicts our lower bound on |Bsmall|, and so we must have the required
density increment. □

The previous lemma shows our need to work on two different scales at once, and
to count 3APs where two elements come from B but the middle element comes
from a narrowed copy Bδ. This suggests that when working with A ⊆ B we need
to count 3APs where two elements come from A and the third comes from A∩Bδ.
There is a problem with this though – we don’t know how large A∩Bδ is. Indeed, it
might even be empty! Bδ is (possibly) much smaller than B, so might entirely miss
A. To avoid this, we show that there exists some translate of A which is reasonably
large in both a narrowed copy of B and also in a doubly narrowed copy of B – or,
as above, we have a density increment that we’re happy with.

Lemma 12. Let B be a regular Bohr set of rank d and suppose A ⊆ B has density
α = |A| / |B|. Suppose that B′, B′′ ⊆ Bδ where δ = c0αϵ/d for some sufficiently
small absolute constant c0 > 0. Then either

(1) there is an x ∈ B such that |(A− x) ∩B′| ≥ (1−2ϵ)α |B′| and |(A− x) ∩B′′| ≥
(1− 2ϵ)α |B′′|, or

(2) there is an x such that

max

(
|(A− x) ∩B′|

|B′|
,
|(A− x) ∩B′′|

|B′′|

)
≥ (1 + ϵ)α.

Proof. By regularity (in particular the second conclusion of Lemma 20),

⟨1A ∗ 1B′ , 1B⟩ = ⟨1A, 1B ∗ 1B′⟩
= |A| |B′|+O(δd |B| |B′|)
= α |B| |B′|+O(δd |B| |B′|).

In particular, provided δ ≤ cα/d for some small enough absolute constant c > 0,
we have

⟨1A ∗ 1B′ , 1B⟩ ≥ (1− ϵ/2)α |B| |B′|
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and similarly

⟨1A ∗ 1B′′ , 1B⟩ ≥ (1− ϵ/2)α |B| |B′′| .
In particular, if µB′ = 1

|B′|1B′ and µB′′ = 1
|B′′|1B′′ then

⟨1A ∗ µB′ + 1A ∗ µB′′ , 1B⟩ ≥ (2− ϵ)α |B| .

By the pigeonhole principle, there exists some x ∈ B such that

1A ∗ µB′(x) + 1A ∗ µB′′(x) ≥ (2− ϵ)α.

If 1A∗µB′(x) ≥ (1+ϵ)α then we are in the second case, and similarly for 1A∗µB′′(x).
Thus either the second case holds, or else both

1A ∗ µB′(x) ≥ (1− 2ϵ)α

and

1A ∗ µB′′(x) ≥ (1− 2ϵ)α

as required. □

We are now ready to prove our density increment result, Lemma 10. The overall
structure of the proof is very similar to the simpler case in Fn

p , Lemma 5, but there
are complications due to having to work with Bohr sets of different widths.

Proof of Lemma 10. Let A ⊆ B with density α = |A| / |B|, where B is a regular
Bohr set of rank d and width ρ. We need to work with different layers of Bohr
sets in this proof, so it’s convenient to define them now: let B(1) = Bδ1 and
B(2) = (B(1))δ2 = Bδ1δ2 , where δi = ciα

2/d, with c1, c2 some absolute constants
chosen to be sufficiently small and such that B(1) and B(2) are themselves regular.

We begin by applying Lemma 12 with B(1), B(2) playing the roles of B′, B′′, and
ϵ = cα, where c > 0 is some small constant we’ll choose later. If the second case
holds, then we have a density increment as needed. Otherwise, there is some x such
that if we let A1 = (A − x) ∩ B(1), with density α1 = |A1| /

∣∣B(1)
∣∣, and similarly

A2 = (A− x)∩B(2), with density α2 = |A2| /
∣∣B(2)

∣∣, then min(α1, α2) ≥ (1− 2ϵ)α.
(In particular, provided ϵ ≤ 1/4, we have α1 ≥ α/2.)

Crucially, because A itself has no non-trivial 3APs, and 3APs are translation
invariant, there are still no non-trivial solutions to x+ y = 2z where x, y ∈ A1 and
z ∈ A2. This means that

⟨1A1
∗ 1A1

, 12·A2
⟩ = |A2| .

On the other hand, Lemma 11 implies that either we have a suitable density incre-
ment, and we are done, or else

⟨1A1
∗ 1A1

, 12·B(2)⟩ ≥ 1
2α

2
1|B(1)||B(2)|.

If α1 < 2|B(1)|−1/2, then we are in the first case: by repeated applications of the
second part of Lemma 6 we have that

∣∣B(1)
∣∣ ≥ (δ1)

O(d) |B|, and hence

α ≤ 2α1 ≪ |B(1)|−1/2 ≪ (d/α)O(d) |B|−1/2

as required. Otherwise, if f = 12·A2
− α212·B(2) , then

⟨1A1
∗ 1A1

, f⟩ ≤ |A2| − 1
2α

2
1|B(1)| |A2| ≤ − 1

4α
2
1|B(1)| |A2| .
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By Parseval’s identity and the triangle inequality (just as in the proof of Lemma 5)
we deduce that

E
γ

∣∣∣f̂(γ)∣∣∣ ∣∣∣1̂A1
(γ)
∣∣∣2 ≫ α2|B(1)| |A2| .

Again, just as in the proof of Lemma 5, since by Parseval’s identity we have

Eγ |1̂A1
(γ)|2 = |A1|, we deduce that there exists some character λ such that∣∣∣f̂(λ)∣∣∣≫ α1 |A2| .

We now simplify matters by noting that if fA = 1A2 − α21B(2) , then for any x, we
have f(2x) = fA(x), and so

f̂A(2λ) =
∑
x

f(2x)λ(2x) =
∑
y

f(y)λ(y) = f̂(λ).

In particular, there is some γ such that |f̂A(γ)| ≫ α1 |A2|.
We let B′ be the Bohr set formed by adding γ to the frequency set of B(2) and

then multiplying the width by a factor of c3α
2/d, where c3 > 0 is another constant

chosen in particular so that B′ is regular. We will first use regularity to replace
fA = 1A2

− α21B(2) by f ′
A = 1A2

− α21B(2)+B′ . We have that∣∣∣f̂A(γ)− f̂ ′
A(γ)

∣∣∣ ≤ α2

∣∣∣(B(2) +B′)\B(2)
∣∣∣≪ c3α2α

2
∣∣∣B(2)

∣∣∣ ,
and in particular, assuming c3 is sufficiently small enough, we still have∣∣∣f̂ ′

A(γ)
∣∣∣≫ α |A2| .

As in the proof of Lemma 5, let θ ∈ C be such that θf̂ ′
A(γ) = |f̂ ′

A(γ)|, so that

⟨f ′
A, θγ(y) + 1⟩ =

∣∣∣f̂ ′
A(γ)

∣∣∣+∑
x

f ′
A(x)

and hence, since by regularity∑
x

f ′
A(x) = |A2| − α2|B(2) +B′| = −α2|(B(2) +B′)\B(2)| ≪ c3α2α

2|B(2)|,

provided c3 is small enough, we have

⟨f ′
A, θγ + 1⟩ ≫ α1 |A2| ≫ α |A2| .

In the proof of Lemma 5 we divided the sum into cosets v + V ′. In our present
case, there is no such neat decomposition into cosets, so instead we average over all
translates x+B′ as x ranges over B(2).

Thus, by regularity of B(2), (and since |f ′
A(x)| ≪ 1 for all x)

∑
x∈B(2)

 ∑
y∈B′+x

f ′
A(y)(θγ(y) + 1)

 = ⟨1B(2) ∗ 1B′ , f ′
A(θγ + 1)⟩

= |B′| ⟨1B(2)f ′
A, θγ + 1⟩+O(c3α

2|B(2)| |B′|).

We relate the value of this inner product to that above by regularity yet again (and
using that |f ′

A(θγ + 1)| ≪ 1 and that f ′
A is supported on B(2) +B′):

⟨f ′
A, θγ + 1⟩ − ⟨1B(2)f ′

A, θγ + 1⟩ ≪ |(B(2) +B′)\B(2)| ≪ c+ 3α2|B(2)|,
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and so, provided we choose c3 small enough, we have

⟨1B(2)f ′
A, θγ + 1⟩ ≫ α |A2|

and hence ∑
x∈B(2)

 ∑
y∈B′+x

f ′
A(y)(θγ(y) + 1)

≫ α |A2| |B′| .

Finally, we note that while γ(y) is not constant on the translates B′ + x, it is
approximately constant: indeed, if y = t+ x where t ∈ B′, then

|γ(y)− γ(x)| = |1− γ(t)| ≪ c3α/d,

since γ was included in the frequency set of B′. Therefore,∑
x∈B(2)

(θγ(x) + 1)

 ∑
y∈B′+x

f ′
A(y)

 ≥ c4α1 |A2| |B′| −O(c3
α
d

∣∣∣B(1)
∣∣∣ ∣∣∣B(2)

∣∣∣).
Once again, provided we have chosen c3 > 0 small enough, this right-hand side is
at least 1

2c4α1 |A2| |B′|. Taking the real parts and averaging over all x ∈ B(2), as

in the proof of Lemma 5, we deduce that there exists some x ∈ B(2) such that

|A2 ∩ (B′ + x)| − α2 |B′| =
∑

y∈B′+x

f ′
A(y) ≫ αα2 |B′| .

In particular, there is an absolute constant c > 0 such that

|(A2 − x) ∩B′|
|B′|

≥ (1 + cα)α2 ≥ (1 + cα)(1− 2ϵ)α.

If we choose ϵ = cα/8, then the right-hand side is ≥ (1 + c
4α)α, and we are done,

since A2 itself was a subset of a translate of A. □



CHAPTER 4

Lecture Five

In this chapter we will mostly return to the simpler model setting of Fn
p and

explore how one might strengthen the density increment method to go beyond
Meshulam’s density bound of O(1/ logN). (Recall our convention that N is the
size of the ambient group, which here is pn, so logN ≍ n).

6. Density increment strengths

It is convenient to introduce the following definition.

Definition 4. Let A ⊆ Fn
p with density α. We say A has a density increment of

strength [δ, d] if there is some subspace V of codimension O(d) and some x such
that

|(A− x) ∩ V |
|V |

≥ (1 + cδ)α,

where c is some constant.

In this language, therefore, Meshulam’s proof can be phrased as follows.

Lemma 13 (Meshulam’s increment). If A ⊆ Fn
p is a set of density α with no

non-trivial three-term arithmetic progressions then either α ≪ N−1/2 or A has a
density increment of strength [α, 1].

Let’s now recap how we applied this increment to obtain Meshulam’s bound:
after O(1/α) many steps we must halt since the density is > 1, and each step loses
1 in the codimension, so the final codimension loss is O(α−1). We halt with a vector
space of size

N ′ ≫ p−O(α−1)N

such that the α ≪ (N ′)−1/2. We can assume that α ≫ N−1/4 (or we are already
done), and hence N ′ ≪ N1/4, which means α−1 ≫ logN .

In general, suppose we have a result like (assuming A has no non-trivial three-
term arithmetic progressions) either α ≪ N−1/2 or A has a density increment of
strength [δ, d]. This density doubles after ≪ δ−1 many steps, and we can double
at most ≪ log(1/α) times before we are > 1, so (recalling that ≲ hides log factors)
this increment can apply ≲ δ−1 many times. Each time we have lost d in the
codimension, so the final codimension loss is ≲ δ−1d. We halt with a vector space
of size

N ′ ≫ p−Õ(δ−1d)N

such that the α ≪ (N ′)−1/2. We can assume that α ≫ N−1/4 (or we are already
done), and hence N ′ ≪ N1/4, which means δ−1d ≳ logN .

To summarise: a density increment lemma of strength [δ, d] iterated implies that
δ−1d ≳ logN . Let’s see a couple of examples.

28
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(1) Meshulam’s [α, 1] implies α−1 ≳ logN , or α ≲ 1/ logN .
(2) A density increment of strength [1, α−1] would also yield α−1 ≳ logN .
(3) A very strong density increment of [1, 1] would imply 1 ≳ logN . In fact

since the ≳ is only hiding a single log(1/α) factor this would imply the
very strong density bound of α ≤ N−c for some constant c > 0. (This is
actually true for Fn

p , as was shown by Ellenberg and Gijswijt using Croot-
Lev-Pach’s polynomial method, but so far this seems out of reach of the
density increment method.)

Let’s return to the general setting of Bohr sets (in particular to the cyclic group
Z/NZ) to see how things play out there.

Definition 5. Let B be a regular Bohr set of rank r and width ρ, and A ⊆ B
with density α. We say A has a density increment of strength [δ, d] if there is some
regular Bohr set B′ ⊆ B of rank r + O(d) and width ≫ αO(1)ρ, and some x such
that

|(A− x) ∩ V |
|V |

≥ (1 + cδ)α,

where c is some constant.

This is the same as the special case above, except that now we have a width
parameter to also keep track of. The important thing about this is that it affects
the size of the Bohr set; recall that if B ⊆ G is a Bohr set of rank r and width ρ
then

|B| ≥ ρO(r)N.

Again, we restate Bourgain’s density increment (informally) in these terms.

Lemma 14 (Bourgain’s increment). If B is a regular Bohr set and A ⊆ B is a
set of density α with no non-trivial three-term arithmetic progressions then either

α ≪ |B|−1/2
or A has a density increment of strength [α, 1].

In general, suppose we have such a lemma with either α ≪ |B|−1/2
or A has a

density increment of strength [δ, d]. As above (starting with A ⊆ G with density
α) we can iterate this ≲ δ−1 many times, and then halt with a Bohr set of rank

≲ δ−1d. The width of this Bohr set is like exp(−Õ(δ−1)). We halt with a Bohr set
of size

N ′ ≫ exp(−Õ(δ−2d))N

such that the α ≪ (N ′)−1/2. We can assume that α ≫ N−1/4 (or we are already
done), and hence N ′ ≪ N1/4, which means δ−2d ≳ logN .

Notice the key difference with the Fn
p case! There we ended up with δ−1d ≳ logN ,

while for Bohr sets we have δ−2d ≳ logN , because the width is also decaying, and
we have lost a multiplicative factor in the width a further δ−1 many times. Let’s
see a couple of examples.

(1) Bourgain’s [α, 1] implies α−2 ≳ logN , or α ≲ 1/(logN)1/2.
(2) A density increment of strength [1, α−1] would yield α−1 ≳ logN , or α ≲

1/ logN . Note that now these two cases are actually different, and this is
better than the above.

(3) A very strong density increment of [1, 1] would still imply 1 ≳ logN . In fact
since now the ≳ is only hiding a log(1/α)2 factor this would imply the very
strong density bound of α ≤ exp(−O(

√
logN)), which matches Behrend’s

lower bound.
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(4) A density increment of strength [1, (log(1/α))O(1)] would already imply
α ≤ exp(−(logN)c) for some constant c > 0. This is exactly the increment
obtained in the recent breakthrough of Kelley and Meka, which we will
discuss later in the course.

I will now return to the model setting of Fn
p , but hopefully this discussion explains

why a density increment of strength [1, α−1] is better than [α, 1], even if they give
identical results in Fn

p .

7. An improved density increment

In this section I will sketch how to go about getting an increment of strength
[1, α−1] (under the usual assumptions of no three-term arithmetic progressions).

We begin as before: under the assumption that A ⊆ Fn
p has no non-trivial three-

term arithmetic progressions and α ≫ N−1/2 we deduce that, with fA = 1A − α,

E
γ

|f̂A(γ)||1̂A(γ)|2 ≫ α |A|2 .

In Meshulam’s proof we then noted that by Parseval’s identity Eγ |1̂A(γ)|2 = |A|,
whence there must exist some γ such that |f̂A(γ)| ≫ α |A|. Again recall that the

Fourier transform of fA is in fact equal to that of 1̂A everywhere except the trivial
character, where it is equal to 0.

This part of Meshulam’s argument can therefore be summarised as: if A ⊆ Fn
p

has no non-trivial three-term arithmetic progressions and α ≫ N−1/2 then there is

a non-trivial character γ such that the Fourier coefficient is large, |1̂A(γ)| ≫ α |A|.
We will now consider not just a single such character, but a whole collection, and
so introduce the following definition.

Definition 6 (Large spectrum). Let A ⊆ G and η ∈ [0, 1]. We define the η-large
spectrum of A as

∆η(A) = {γ ̸≡ 1 : |1̂A(γ)| ≥ η |A|}.

For example note that ∆0(A) = Ĝ\{1} and ∆1(A) is the collection of γ such
that γ(a) = 1 for all a ∈ A. The following simple fact is very important to bear in
mind.

Lemma 15. If A ⊆ G with density α and η ∈ [0, 1] then

|∆η(A)| ≤ η−2α−1.

Proof.

η2 |A|2 |∆η(A)| ≤
∑
γ

|1̂A(γ)|2 = |A|N

by Parseval’s theorem (or just expand out and use orthogonality). Now rearrange.
□

Meshulam’s argument can be phrased as “∆cα(A) is not empty” (for some con-
stant c > 0). Can we do better? Yes! Recall that we actually know that

E
γ

|f̂A(γ)||1̂A(γ)|2 ≫ α |A|2 .
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This is a lot stronger than just “∆α(A) is not empty”. Let’s explore why. First of

all we’ll undo our normalisation and replace f̂A by 1̂A to get∑
γ ̸≡1

|1̂A(γ)|3 ≫ |A|3 .

Now the contribution to the left-hand side from γ ̸∈ ∆cα(A) is

≤ cα |A|
∑
γ

|1̂A(γ)|2 = c |A|3 ,

and in particular if we choose the constant c > 0 small enough, then we deduce
that ∑

γ∈∆cα(A)

|1̂A(γ)|3 ≫ |A|3 .

Again, note this in particular implies that the left-hand side is not zero, so ∆cα(A)
is not empty, which is where Meshulam (and indeed Roth and Bourgain) halt.

But giving a good lower bound for this sum is saying a lot more than just saying
it’s not zero. We apply dyadic pigeonholing to turn this into something nicer; note
that since for γ ∈ ∆cα(A) we have

α |A| ≪ |1̂A(γ)| ≤ |A|

there are only log(1/α) ≲ 1 many dyadic scales that |1̂A(γ)|/ |A| can live on. Choose

a single dyadic scale on which the sum is ≳ |A|3 – this means we have chosen some
α ≪ η ≪ 1 such that if

∆ = {γ ̸≡ 1 : |1̂A(γ)| ∈ [η, 2η] |A|}

then ∑
γ∈∆

|1̂A(γ)|3 ≳ |A|3 .

But since |1̂A(γ)|3 ≍ η3 |A|3 on ∆ this is equivalent to saying |∆| ≳ η−3. Now we
observe that ∆ ⊆ ∆η(A). We have proved the following.

Lemma 16. If A ⊆ G has density α and no non-trivial three-term arithmetic
progressions then either α ≪ N−1/2 or there is some α ≪ η ≤ 1 such that

|∆η(A)| ≳ η−3.

To see why this is stronger, think about what happens at the two extremes,
where η ≈ 1 or η ≈ α. In the former our lower bound is not great, only ≳ 1, but in
particular ∆η(A) is not empty – so we have found a non-trivial charater γ such that

|1̂A(γ)| ≫ |A|. This is much better than ≫ α |A|, and in particular the averaging
argument we saw before immediately gives a density increment of strength [1, 1],
fantastic!

So we are very happy if η ≈ 1. What if η ≈ α? Now our Fourier coefficients
are much smaller, possibly only of size ≍ α |A|, the same size as Meshulam found.
But now we know much more – there exists not just one of them, but lots, α−3 as
many.

But we need to find a way to make use of this fact – we want to find a density
increment that makes use of not just one large Fourier coefficient, but a whole
bunch at once.
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Lemma 17. Let A ⊆ G with density α and η ∈ [0, 1]. If ∆ ⊆ ∆η(A) and V = ∆⊥

is the subspace which annihilates ∆ then there exists some x such that

|(A− x) ∩ V |
|V |

≥ (1 + η2 |∆|)α.

In particular, A has a density increment of strength [η2 |∆| ,dim(∆)].

Here dim(∆) is the dimension of the space spanned by ∆ (in Fn
p ). There is a

more robust notion that makes sense in any group, which we will examine below.

Proof. Since γ(x) = 1 for all γ ∈ ∆ and x ∈ V we know that 1̂V (γ) = |V | for
γ ∈ ∆. This means that

η2 |A|2 |∆| |V |2 ≤
∑
γ∈∆

|1̂A(γ)|2|1̂V (γ)|2.

Note that ∆ does not contain the trivial character, and so we can add this contri-
bution on, and deduce that

(1 + η2 |∆|) |A|2 |V |2 ≤
∑
γ

|1̂A(γ)|2|1̂V (γ)|2.

Apply Parseval’s identity to go back to physical space (recalling that ̂1A ◦ 1A =

|1̂A|2) this is saying that

(1 + η2 |∆|)α |A| |V |2 ≤ ⟨1A ◦ 1A, 1V ◦ 1V ⟩ = ⟨1A ◦ 1V , 1A ◦ 1V ⟩.
But the right-hand side is trivially at most

∥1A ◦ 1V ∥∞∥1A ◦ 1V ∥1 = ∥1A ◦ 1V ∥∞ |A| |V | .
Therefore

∥1A ◦ 1V ∥∞ ≥ (1 + η2 |∆|)α |V | .
But the left-hand side is exactly 1A ◦ 1V (x) = |(A− x) ∩ V | for some x, and we are
done. □

If we use this lemma with the information that 16 provides (ignoring log factors)
then we deduce that A has a density increment of strength [η−1, η−3]. Here we have
used the trivial fact that dim(∆) ≤ |∆|. Note that the size of the density increment
is actually very good – we have α 7→ (1 + η−1)α. The downside is the codimension
cost. In particular if η ≈ α (as is indeed possible) then this is like [α−1, α−3] which
quantitatively (ignoring log factors) is no better than [1, α−3]. This iterated would
only lead to a bound for the density of sets without three-term progressions like
≪ 1/(logN)1/3.

To do better we will first see whether we can improve on the trivial fact that
dim(∆) ≤ |∆|. For general sets, of course, this cannot be improved – we can take
the entirety of ∆ to be linearly independent elements in Fn

p . A crucial fact is that,
when ∆ is a spectrum, there is an improvement available.

Lemma 18 (Chang’s lemma). If A ⊆ G with density α and η ∈ [0, 1] then

dim(∆η(A)) ≪ η−2 log(1/α).

In particular dim(∆) ≲ η−2. This is much better than the cruder dim(∆) ≤
|∆| ≲ η−3 that we used above, and in particular leads to a density increment of the
strength [η−1, η−2], which in the worst case looks like [1, α−2].
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Proof. Let Γ ⊆ ∆ be a maximal linearly independent subset. It suffices to bound
the size of Γ. This falls into two stages: we show that any subset of ∆ has many
solutions to linear equations, and compare that to the fact that Γ can have (thanks
to linear independence) only trivial solutions.

We first define, for any m ≥ 1, the m-fold additive energy of a set

E2m(X) = {(x1, . . . , x2m) ∈ X2m : x1 + · · ·+ xm = xm+1 + · · ·+ x2m}.
(Note that this makes sense for any finite set in an abelian group, in particular for
any set of characters.) We have the trivial bounds

|X|m ≤ E2m(X) ≤ |X|2m−1
,

the lower bound coming from the trivial solutions where xm+i = xi for 1 ≤ i ≤ m.
We claim that, for any m ≥ 1 and ∆′ ⊆ ∆,

E2m(∆′) ≥ η2mα |∆′|2m .

For example, with m = 1 this is saying that

E2(∆) ≥ η2α |∆|2 .
The left-hand side is just counting the number of γ1 = γ2 with γi ∈ ∆, which is of
course |∆|, and therefore this is reproving that |∆| ≤ η−2α−1. Chang’s lemma is
taking advantage of the fact that this holds even as m → ∞.

Before proving this general bound we use it to deduce Chang’s lemma. The key
observation is that there are no non-trivial linear dependencies between elements
of Γ, and hence

E2m(Γ) ≤ m! |Γ|m ≤ mm |Γ|m .

Comparing this to the lower bound above, for any m ≥ 1,

|Γ| ≤ η−2mα−1/m.

In particular choosing m = ⌈log(1/α)⌉ this is ≪ η−2 log(1/α) as required.
It remains to prove the energy lower bound. The starting point is the fact that

η |A| |∆′| ≤
∑
γ∈∆′

|1̂A(γ)| =
∑
γ∈∆′

∣∣∣∣∣∑
a∈A

γ(a)

∣∣∣∣∣ .
We would like to change the order of summation here, but the absolute value
prevents us. Undeterred, we just add in a sign and do it anyway – let cγ be such

that cγ 1̂A(γ) = |1̂A(γ)|. Therefore

η |A| |∆′| =
∑
γ∈∆′

cγ 1̂A(γ) =
∑
a∈A

∑
γ∈∆′

cγγ(a).

We now apply Hölder’s inequality to bound the right-hand side above by

|A|1−1/2m

∑
a∈A

∣∣∣∣∣∣
∑
γ∈∆′

cγγ(a)

∣∣∣∣∣∣
2m


1/2m

.

Taking 2m-powers and rearranging we have

η2m |A| |∆′|2m ≤
∑
a∈A

∣∣∣∣∣∣
∑
γ∈∆′

cγγ(a)

∣∣∣∣∣∣
2m

.
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We now exploit the fact that the right-hand side is a sum of non-negative terms to
remove the restriction that a ∈ A:

η2m |A| |∆′|2m ≤
∑
x∈G

∣∣∣∣∣∣
∑
γ∈∆′

cγγ(x)

∣∣∣∣∣∣
2m

.

Now we expand out the power so that the right-hand side is equal to∑
γ1,...,γ2m

cγ1
· · · cγ2m

∑
x∈G

γ1(x) · · · γ2m(x).

By orthogonality the inner sum is 0 if γ1+· · ·−γ2m = 0 and N otherwise. Therefore

η2m |A| |∆′|2m ≤
∑

γ1,...,γ2m∈∆′

cγ1
· · · cγ2m

1γ1+···+γm=γm+1+···+γ2m
.

The right-hand side is almost the additive energy E2m(∆′), except for the annoying
sign terms. But we can just throw them away by the triangle inequality – their
inclusion could only be introducing cancellation into the count, so the right-hand
side is at most E2m(∆′), and the proof is complete. □

It is an instructive exercise to explore where exactly this proof used that G was
a group. More robust notions are available where G can be replaced by a Bohr set.

Using Chang’s lemma we have shown that if a set A lacks three-term progressions
then (α ≪ N−1/2 or) A has a density increment of strength [1, α−2]. Our goal is to
obtain a strength of [1, α−1] – this leads to nothing new in the Fn

p model setting,
but (after a translation into Bohr sets) would give a ≪ 1/(logN) bound in the
integers.

Can we improve Chang’s lemma? An example of Ben Green shows that this is im-
possible – there do exist examples of sets A and η such that |∆η(A)| ≈ η−2 log(1/α)
and ∆η(A) is linearly independent.

We will sketch Green’s example (a so-called ’niveau set’) in the simplest setting
of Fn

2 (when it is in fact a Hamming ball). The pleasing feature of this group is
that elements can be identified with subsets of [n]. Identifying the dual group also
with subsets of [n], we have that (viewing γ, x as subsets of [n])

γ(x) = (−1)|γ∩x|.

In particular there are n linearly independent characters, corresponding to the basis
vectors in Fn

2 or equivalently the singleton sets {i}, for each of which the character
evaluates to

{i}(x) = (−1)1i∈x .

Note that (
n− 1

k

)
−
(
n− 1

k − 1

)
=

n− 2k

n

(
n

k

)
.

In particular if we let A be the collection of all sets of size ≤ n/2−
√
n then

1̂A(i ∈ A) =
∑
x∈A

1i∈x −
∑
x∈A

1i̸∈x =
∑

k≤n/2−
√
n

n− 2k

n

(
n

k

)
≥ 1√

n
|A| .

We have |A| ≫ 2n (e.g. via standard concentration of measure, since we’re esti-
mating the probability that a random collection of n 0/1 has at most n/2 −

√
n

many 1s, which is at most one standard deviation less than the expected count)
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and so this produces a set of density α ≫ 1 and η ≈ 1/
√
n such that there are

n ≍ η−2 many independent elements in ∆η(A). We leave as an exercise extend-
ing this construction to handle smaller densities α while achieving ≍ η−2 log(1/α)
many independent elements. (Hint: Take the previous set and add an orthogonal
subspace.)

We cannot hope therefore for a simple win to improving density increment via
improving Chang’s lemma. An obvious weakness remaining is that our density
increment was actually of strength [η−1, η−2], and the first parameter is much
stronger than we need. Can we use this to improve the second parameter? Ex-
amining Lemma 17 we see that it would suffice to product some ∆′ ⊆ ∆ with
|∆′| ≈ η−2 with smaller dimension. That is, can we improve Chang’s lemma if
we’re prepared to pass to a smaller subset? The answer, fortunately, is yes.

Lemma 19 (Improved Chang’s lemma). If A ⊆ G with density α and η ∈ [0, 1]
then there there exists ∆ ⊆ ∆η(A) such that

dim(∆) ≪ η−1 log(1/α)

and

|∆| ≪ η |∆η(A)| .

(Note that this does not contradict Green’s example.)

Proof. This is a sketch proof, sweeping away some unpleasant technical calculations.
Let d ≈ Cη−1 log(1/α), for some constant C > 0. The idea is to choose d

elements of ∆η(A) uniformly at random, say Γ, and then look at the subset of
∆η(A) which they span.

The plan is that if the conclusion fails then this Γ should be close to being
independent, and therefore should have small energy – but this will contradict the
fact that as a random subset of the spectrum it should have large energy.

In particular, suppose that the conclusion fails, so every subset of ∆η(A) of size
at least η |∆η(A)| has dimension > d. What this means is that, when we were
selecting our d random elements, at each stage there was a probability at least η
that the next element was not in the span of the previous elements.

From this it follows that, for any k, the probability that Γ has dimension d−k is
at most the probability that k events with probability ≤ η occur in d independent
trials, which is (

d

k

)
ηk ≤ (dη)k/k!.

Instead of considering the energy E2m as in the proof of Chang’s lemma, we will

consider the ‘restricted energy’ E♯
2m(Γ), defined to be the count of γ1, . . . , γ2m ∈ Γ

such that γ1 + · · ·+ γm = γm+1 + · · ·+ γ2m and γi ̸= γj for all i ̸= j.
We first claim that if dim(Γ) = d− k then

E♯
2m(Γ) ≤ (2m)!4k

Indeed, write Γ = Γ0 ⊔Γ1 with Γ0 linearly independent and |Γ0| = d− k. We write

a tuple counted by E♯
2m as

±γ1 + · · · ± γr = ±λ1 ± · · · ± λ2m−r

There are at most 4k possible choices a tuple of λi (since they must be distinct).
Once these are fixed the elements appearing on the left-hand side is also fixed by
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linear independence of Γ0, and hence we only need to take the ordering into account,
which is a factor of (2m)!.

Summing over all possible values of k we deduce that

EE♯
2m(Γ) ≤

∑
k

(dη)k

k!
(2m)!4k ≤ m2me4dη ≤ m2mα−O(1),

say. On the other hand, by linearity of expectation,

EE♯
2m(Γ) ≈

(
d

|∆|

)2m

E♯
2m(∆).

(Note it is vital here that we were considering E♯
2m rather than E2m here, so that

the probability that a given 2m-tuple lies in Γ is (d/ |∆|)2m.)
It follows that

E♯
2m(∆) ≪ m2mα−O(1)d−2m |∆|2m .

We now make the major simplifying assumption that E♯
2m(∆) ≈ E2m(∆). This is

definitely not true in general! For a full proof one must decompose the full energy

E2m into a weighted sum of smaller restricted energies E♯
2t for t ≤ m and perform

this argument for each summand.
Assuming this simplifying assumption though, we deduce that

α−O(1)m2md−2m |∆|2m ≫ E2m(∆) ≥ η2mα |∆|2m .

Taking mth roots and rearranging we deduce that

α−O(1/m)mη−1 ≫ d.

Takingm some multiple of log(1/α) and recalling d is a large multiple of η−1 log(1/α)
results in a contradiction, and we are done. □

Employing this improved Chang’s lemma we obtain a density increment of
strength [1, α−1] and thence a density bound of ≪ 1/ logN , as required. In partic-
ular a robust version of this proof over Bohr sets delivers the same result for the
integers.



CHAPTER 5

Lecture Six

8. Bateman-Katz improvement

In 2012 Bateman and Katz delivered the first improvement on Meshulam’s
bound.

Theorem 7 (Bateman-Katz). If A ⊆ Fn
3 contains no non-trivial three-term arith-

metic progressions then

|A| ≪ 3n

n1+c
,

where c > 0 is some small constant.

The first part of their proof is standard, and follows along the same lines as above:
if A has no non-trivial three-term arithmetic progressions then (either α ≪ N−1/2

or) there is some 1 ≥ η ≫ α such that

|∆η(A)| ≳ η−3.

To obtain a bound like ≪ 1/(logN)1+c we have seen that it suffices to obtain
from this a density increment of strength [1, α−1+c] for some constant c > 0. The
previous argument utilising improved Chang’s lemma obtains a density increment of
strength [1, η−1], so we are done already if this large spectrum occurs at η ≫ α1−c.

I’ll now sketch what we do in the hardest case, when η ≈ α. This means we have

|∆α(A)| ≈ α−3

(up to logarithmic factors). The first observation is that we have already obtained
a density increment of strength [1, α], and only need to improve upon this slightly
– in particular, if we can improve the statement of Chang’s lemma (or improved
Chang’s lemma) even a little then we are done. The only thing these proofs required
was the energy estimate

E2m(∆) ≥ η2mα |∆|2m .

In particular, and this is the first main idea, we can actually assume that this lower
bound is approximately also an upper bound – for if some energy was larger then
we could leverage this into a better version of Chang’s lemma and be done.

Therefore we may assume that E2m(∆) ≈ η2mα |∆|2m for allm ≥ 2. For example
(recalling η ≈ α and abs∆ ≈ α−3)

E4(∆) ≈ η4α |∆|4 ≈ α2 |∆|3 ≈ |∆|2+1/3
.

On the face of it, this is not particularly useful information – we know that
E4(∆) ∈ [|∆|2 , |∆|3] and this falls in the middle of this range, far away from any
extremes where might hope to gain some kind of information about what ∆ looks
like. Using E4 alone this is true.

37
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But Bateman and Katz observed that the knowledge of E8(∆) combined with
E4(∆) does allow us to say something. We know that

E8(∆) ≈ α6 |∆|7 .

In particular, if we normalise e4(∆) = E4(∆)/ |∆|3 and e8(∆) = E8(∆)/ |∆|7 then

e34 ≈ e8.

Why is this significant? Because for any set ∆ we always have

e34 ≤ e8.

Here is a simple proof using two applications of the Cauchy-Schwarz inequality:

E4(∆)4 = ⟨1∆ ◦ 1∆, 1∆ ◦ 1∆⟩4

= ⟨1∆, 1∆ ∗ 1∆ ◦ 1∆⟩4

≤ |∆|2 ⟨1∆ ∗ 1∆ ◦ 1∆, 1∆ ∗ 1∆ ◦ 1∆⟩2

= |∆|2 ⟨1∆ ◦ 1∆, 1∆ ∗ 1∆ ◦ 1∆ ◦ 1∆⟩2

≤ |∆|2 E4(∆)E8(∆).

Now we do know something interesting about our spectrum ∆ – it is a set where
this inequality is nearly sharp. In general, whenever you see an inequality nearly
sharp, you might expect some kind of inverse result.

That there is something interesting you can say about sets with e34 ≈ e8 is the
main idea behind the proof of Bateman and Katz.

9. Additively non-smoothing sets

Let ∆ be a set such that E4(∆) = τ |∆|3. As we have seen, two applications of

the Cauchy-Schwarz inequality imply that E8(∆) ≥ τ3 |∆|7. Bateman and Katz
call sets which almost achieve this lower bound ‘non-smoothing sets’: the idea is
that these are sets where looking at 4-fold sums doesn’t give us any more interesting
information than looking at the 2-fold sums did. In other words, these sets do not
‘smooth out’ under repeated addition.

The classic example of a smoothing set is a random set – if ∆ is a random subset
of a subspace then, with high probability, ∆ +∆ fills out the entire subspace, and
in particular is a much more structured set than ∆. The idea is that knowing our
set is non-smoothing should therefore be telling us that ∆ is non-random in some
way (which in turn we eventually hope to exploit as a density increment somehow).

To see what kind of information we should hope for we will consider two examples
of non-smoothing sets. First a silly example: if ∆ is a subspace, or in general a
very structured set, then it must be non-smoothing, since 1 ≈ e4 ≈ e34 ≈ e8. As
we have seen, however, when ∆ is the spectrum we’re interested in we know that

e4 ≈ |∆|−2/3
, so we need examples that allow for any values of e4.

For the first example, consider

∆1 = H ⊕D and ∆2 =

L⊔
i=1

Hi,

where H and Hi are subgroups (and the Hi are all the same size, say |Hi| ≈ K),
and D is ‘dissociated’ in some appropriate sense. For ∆1, we expect that ∆1+∆1 =
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H ⊕D⊕D. On H, we have 1∆1
∗ 1∆1

≈ |∆1|, and on the rest of ∆1 +∆1, we have
1∆1 ∗ 1∆1 ≈ |H|. Therefore

E4(∆1) ≈ |H| |∆1|2 + |∆1 +∆1| |H|2 ≈ 1

|D|
|∆1|3 .

In particular, if |D| ≈ τ−1 and |H| ≈ τ |∆|, then ∆1 has E4(∆1) ≈ τ |∆1|3.
Moreover, a similar calculation shows that

E8(∆1) ≈ |H| (|H|3 |D|2)2 + |∆1 +∆1 +∆1 +∆1| |H|6 ≈ τ3 |∆1|7 .

In particular, ∆1 is additively non-smoothing. For ∆2, on the other hand, as-
suming the Hi are ‘spread out’ enough that they do not additively interact much
with each other,

∆2 +∆2 =

L⊔
i=1

Hi ∪
⊔

1≤i ̸=j≤L

(Hi +Hj).

On the first part, which has size |∆2|, we have 1∆2 ∗ 1∆2 ≈ K. On the second part,

which has size L2K2 ≈ |∆2|2, we have 1∆2
∗ 1∆2

≈ 1. Therefore

E4(∆2) ≈ K2 |∆2|+ |∆2|2 .

In particular, if L ≈ τ−1/2, then E4(∆2) ≈ τ |∆|3. Similarly,

E8(∆2) ≈ K6 |∆2|+ |∆2|4 ≈ τ3 |∆2|7 ,

and hence ∆2 is also additively non-smoothing.
Note that ∆1 and ∆2, although highly structured sets, have qualitatively dif-

ferent kinds of structure. The former is the union of ≈ τ−1 many cosets, each of
which is a translate of the same subgroup, while the latter is the union of ≈ τ−1/2

many cosets, each of which comes from a different subgroup, which do not interact
much.

The philosophy behind the structural results for additive non-smoothing sets is
that these two kinds of structure (and natural interpolations between the two) are
the only ways that a set can be additively non-smoothing.

To motivate the form the structural theorem takes, note that in either construc-
tion there is a set X ⊂ ∆ and a subgroup H ⊂ ∆ such that |X| |H| ≈ τ |∆|2
and |X +H| ≪ |X|. Indeed, for ∆1 we take X = ∆1 and H to be the H in its
construction, and for ∆2 we take X = H = Hi for some arbitrary 1 ≤ i ≤ L.

Theorem 8. If e4(∆) = τ and e8(∆) ≪ τ3 then there are X,H ⊆ ∆ such that

(1)

|H| |X| ≍ τ |∆|2 ,
(2)

|H +H| ≪ |H| ,
and

(3)

|X +H| ≪ |X| .

Of course this is only an informal statement (in fact in the actual statement one
proves a result about the additive energies, which can then be convered into this
form using standard tools from additive combinatorics).
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The way to read this conclusion is that we find some sets H,X in ∆ such that
H is very structured (behaves like a subspace) and X is very structured under
translates from H – but X itself may not be structured!

10. Back to density increments

Let us apply this to our spectral information to see what it says. We have τ ≈ α2

now, so applying this structural result produces X,H ⊆ ∆ = ∆α(A) so that H is

very structured and |H| |X| ≫ α2 |∆|2 ≈ α−4.
We now recall that our density increment procedure produces, for any set ∆′ ⊆

∆, an increment of strength

[α2 |∆′| ,dim(∆′)].

Our initial goal was to produce an increment of strength [1, α1−c], but in the model
setting Fn

p we would also be happy with an increment of the strength [α1−c, 1].

Since H is a very structured set of size α−O(1) we can assume that it has dimension
O(1) (up to logarithmic factors). In particular, if |H| ≫ α−1−c then we are done.

The hardest case remaining therefore is when |H| ≈ α−1, whence |X| ≈ α−3,
which is the size of the full spectrum, so we may as well assume that X ≈ ∆.

To summarise our discussion so far: either we have an increment good enough
to get our result, or we have found some very structured set H ⊆ ∆ of size ≈ α−1

such that H +∆ ≈ ∆.
If we pretend that H is a subspace, this basically means that ∆ is the union of

≈ α−2 disjoint cosets of H. Finishing off the proof now is a little delicate, since
one must deduce a strong increment from this information. The way that Bateman
and Katz proceed is via ‘quotienting out’ the entire space Fn

p by the subspace H,
and then a localised Parseval-type argument finds a single large Fourier coefficient,
and hence an increment of strength [α1−c, 1].

This suffices to achieve a bound like α ≪ 1/(logN)1+c in Fn
p . As we have

seen, however, even assuming that the above is robust enough to be translated
to Bohr sets, an increment of strength [α1−c, 1] would only obtain a bound of
α ≪ 1/(logN)1/2+c.

To achieve a bound like α ≪ 1/(logN)1+c we need to convert this final situation
into an increment of strength [1, α−1+c]. With Olof Sisask we found a method that
does this, which we call ‘spectral boosting’. The idea of spectral boosting is to
that a subset of a spectrum with an unusually large amount of additive structure
is forced to have some translate lie in a spectrum of a higher level. That is, the
‘spectral level’ of a set is automatically ‘boosted’ by its inherent additive structure.

In our set-up, we have some H ⊆ ∆ = ∆α(A) of size ≈ α−1 and constant
dimension such that ∆+H ≈ ∆. Spectral boosting allows us to essentially assume
that (some translate of) H actually behaves like a subset of ∆α1/2(A), which means
we get a much stronger increment of

[α |H| ,dim(H)] = [1, 1].

This is more than enough, and performing this argument over Bohr sets results
in the following.
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Theorem 9 (Bloom-Sisask). If A ⊆ {1, . . . , N} has no non-trivial three-term arith-
metic progressions then

|A| ≪ N

(logN)1+c

for some c > 0.



CHAPTER 6

Lecture Six

We have sketched a complicated spectral approach that uses density increment
to get a little bit past the density threshold of 1/ logN . Last year Kelley and Meka
achieved an astounding breakthrough when they proved a much better bound –
moreover, using hardly any spectral information at all!

Theorem 10 (Kelley-Meka). If A ⊆ {1, . . . , N} has no non-trivial three-term
arithmetic progressions then

|A| ≪ N

exp(c(logN)1/12)

for some c > 0.

This is close to the Behrend lower bound, which has an exponent of 1/2 rather
than 1/12. We will sketch the main ideas of their approach.

As usual, we will switch to the model setting of Fn
p ; you have already seen the

tricks needed to convert this into the language of Bohr sets and hence obtain the
original result (although the details of the conversion are quite tricky!). The driving
force is the following.

Theorem 11. If A ⊆ Fn
p has no non-trivial three-term arithmetic progressions then

either α ≪ N−1/2 or A has a density increment of strength [1, Õα(1)].

We write Õα(1) to emphasise that this codimension loss is really log(1/α)O(1)

– of course, if one cares about the exponent 1/12 then you need to track what
this power actually is, but for our sketch we won’t keep track, and will just ignore
logarithmic factors.

Unlike all the approaches we have seen so far the argument of Kelley and Meka
does not begin with writing things in Fourier space – indeed, Fourier space hardly
enters their argument at all in any significant way. We will depart a little from
their perpsective however, and begin in familiar territory.

11. From few 3APs to large Lp norm

Suppose that A has no non-trivial three-term arithmetic progressions. Then we
have already seen that either α ≪ N−1/2 or

E
γ

|f̂A||1̂A|2 ≫ α |A|2 ,

where fA = 1A − α. Since f̂A = 1̂A except at the trivial character, where it is 0,
we can add back in the trivial character to see that, for constant c > 0,

E
γ

|1̂A(γ)|3 ≥ (1 + c)α |A|2

42
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We use the familiar sign trick to write the left-hand side as∑
a∈A
E
γ

cγγ(a)|1̂A(γ)|2

for some signs cγ ∈ C with |cγ | = 1. We now apply Hölder’s inequality and
orthogonality to deduce that, for any m ≥ 1,

α−1/2m |A|

(
E

γ1,··· ,γ2m

cγ1
· · · cγ2m

|1̂A(γ1)|2 · · · |1̂A(γ2m)|21γ1+···−γ2m=0

)1/2m

≥ (1+c)α |A|2 .

If we choose m ≈ log(1/α) then α−1/2m ≤ 1 + c/10, say, and so (replacing c with
a slightly smaller constant) using the triangle inequality we deduce that(

E
γ1,··· ,γp

|1̂A(γ1)|2 · · · |1̂A(γ2m)|21γ1+···−γp=0

)1/p

≥ (1 + c)α |A| .

Note that this is exactly the same as the argument we used for Chang’s lemma,

except that now we’re arguing with 1̂A instead of 1∆. This has the advantage that
we’re not throwing away information anymore.

What now? We take advantage of the fact that |1̂A|2 is the Fourier transform of
1A ◦ 1A, so that

|1̂A(γ)|2 =
∑
x

1A ◦ 1A(x)γ(x).

. This means that the left-hand side can, by orthogonality, be written as∑
x1,...,xp

1A ◦ 1A(x1) · · · 1A ◦ 1A(xp) E
γ1,...,γp

1γ1+···−γp=0γ1(x1) · · · γp(xp).

By orthogonality this is

E
x∈G

1A ◦ 1A(x)p.

In other words, we have arrived at the pleasingly simple conclusion that (with
p ≈ log(1/α)) we have(

E
x∈G

1A ◦ 1A(x)p
)1/p

≥ (1 + c)α |A| .

This is all the information that we will use to get a density increment. Kelley and
Meka obtained it in an alternative way that uses less Fourier analysis, but this
presentation shows the similarities to previous arguments.

For comparison, note that by Hölder’s inequality(
E
x∈G

1A ◦ 1A(x)p
)1/p

≥ E
x∈G

1A ◦ 1A(x) = α |A| .

We have found an improvement over this by a multiplicative factor of 1 + c. But
what to do with it?

12. Sifting
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