
Analytic Number Theory Sheet 1 - Solutions

Lent Term 2020

1. Let τ3(n) =
∑
a1a2a3=n

1 = 1 ? τ(n). Prove that∑
n≤x

τ3(n) =
1

2
x(log x)2 + c1x log x+ c2x+O(x2/3 log x)

for some constants c1 and c2.

Solution: In this proof the letter c will be used to denote some fixed absolute constant, which may change
from line to line (just to avoid introducing lots of new subscripts) – it’s easy to actually follow the constants
through and check what they all are.

For the hyperbola method we need to make a choice of where to split the summation – it makes sense to
have all 3 factors given the same weight, so we will divide the sum over

τ3(n) =
∑
ab=n

τ(b)

according to whether a ≤ x1/3 or b ≤ x2/3. This gives∑
n≤x

τ3(n) =
∑

a≤x1/3

∑
b≤x/a

τ(b) +
∑

b≤x2/3

τ(b)
⌊x
b

⌋
−
∑

b≤x2/3

τ(b)
⌊
x1/3

⌋
= Σ1 + Σ2 − Σ3,

say. We will evaluate each of these three summands in turn. Recall that we showed in lectures that∑
n≤y

τ(n) = y log y + cy +O(y1/2)

and ∑
n≤y

1

n
= log y + c+O(1/y).

It follows that

Σ1 =
∑

a≤x1/3

(
x

a
log(x/a) + c

x

a
+O

(
x1/2

a1/2

))

= (x log x+ cx)
∑

a≤x1/3

1

a
− x

∑
a≤x1/3

log a

a
+O

x1/2 ∑
a≤x1/3

a−1/2


= (x log x+ cx)( 1

3 log x+ c+O(x−1/3))− x
∑

a≤x1/3

log a

a
+O(x2/3)

= 1
3x(log x)2 + cx log x+ cx+O(x2/3 log x)− x

∑
a≤x1/3

log a

a
,
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where we have bounded the sum in the error term by the integral
∫ x1/3

1
t−3/2 dt = O(x1/6). To evaluate the

final sum, we use partial summation, along with
∑
a≤t

1
a = log t+ c+O(1/t) to obtain

∑
a≤y

log a

a
=

1

2
(log y)2 + c log y + c+O

(
log y

y

)
.

Note, importantly, in this calculation that is it not true that if R(t) = O(1/t) then∫ y

1

R(t)

t
dt = O(1/y);

indeed, depending on the behaviour of the O(1/t) function it could be constant, since the range of integration
is from 1. What is true, however, is that for any R(t) = O(1/t) we have∫ y

1

R(t)

t
dt =

∫ ∞
1

R(t)

t
dt−

∫ ∞
y

R(t)

t
dt = c+O(1/y),

for some constant c depending on R, which is an acceptable substitute.
It follows that

Σ1 =

(
1

3
− 1

2 · 32

)
x(log x)2 + cx log x+ cx+O(x2/3 log x).

We now evaluate

Σ2 = x
∑

b≤x2/3

τ(b)

b
+O

 ∑
b≤x2/3

τ(b)


= x1/3

∑
b≤x2/3

τ(b) + x

∫ x2/3

1

∑
n≤t τ(n)

t2
dt+O

(
x

2
3 log x

)

= x1/3
(

2
3x

2/3 log x+ cx2/3 +O(x1/3)
)

+ x

∫ x2/3

1

t log t+ ct+O(t1/2)

t2
dt+O

(
x

2
3 log x

)
=

1

2
x(log x2/3)2 + cx log x+ cx+O(x2/3 log x)

by partial summation. Finally, we note that

Σ3 = x1/3
∑

b≤x2/3

τ(b) +O

 ∑
b≤x2/3

τ(b)

 = cx log x+ cx+O(x2/3 log x).

Combining these three estimates,∑
n≤x

τ3(n) =

(
1

3
− 1

2 · 32
+

2

9

)
x(log x)2 + cx log x+ cx+O(x2/3 log x).

The leading coefficient here is 1/2 and we’re done.

2. Let ω(n) count the number of distinct prime divisors of n.

(a) Prove that ∑
n≤x

ω(n) = x log log x+O(x).

(b) Prove the ‘variance bound’ ∑
n≤x

|ω(n)− log log x|2 � x log log x.
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(c) Deduce that ∑
n≤x

|ω(n)− log log n|2 � x log log x.

and hence ‘almost all n have (1 + o(1)) log log n distinct prime divisors’ in the sense that the number
of n ≤ x such that |ω(n)− log log n| > (log log n)3/4 is o(x).

Solution: We have ∑
n≤x

ω(n) =
∑
n≤x

∑
p

1p|n

=
∑
p≤x

∑
n≤x

1p|n

=
∑
p≤x

⌊
x

p

⌋
= x

∑
p≤x

1

p
+O(x)

= x log log x+O(x).

For part (b), expanding out the left hand side gives∑
n≤x

ω(n)2 − 2 log log x
∑
n≤x

ω(n) + bxc(log log x)2.

The second summand is −2x(log log x)2 + O(x log log x), and the third is x(log log x)2 + O((log log x)2). It
therefore suffices to show that ∑

n≤x

ω(n)2 ≤ x(log log x)2 +O(x log log x).

For this we note ∑
n≤x

ω(n)2 =
∑
p,q≤x

∑
n≤x

1p|n1q|n

=
∑
p 6=q≤x

⌊
x

pq

⌋
+O(x log log x)

≤ x

∑
p≤x

1

p

2

+O(x log log x)

= x(log log x)2 +O(x log log x).

Finally, for part (c) we note that by the triangle inequality it suffices to show that∑
n≤x

|log log n− log log x|2 � x log log x.

The range n ≤ x1/2 trivially contributes O(x1/2(log log x)2) and if x1/2 ≤ n ≤ x then |log log n− log log x| �
1, and so this range contributes O(x), and hence the sum overall is certainly O(x log log x). Finally, if we let
r(x) count the number of n ≤ x such that |ω(n)− log logn| > 1

2 (log log x)3/4 then

r(x)(log log x)3/2 ≤ 4
∑
n≤x

|ω(n)− log log n|2 � x log log x,

and hence r(x) = o(x), and the final claim follows since for all n ≥ x1/2, say, (log log n)3/4 ≥ 1
2 (log log x)3/4.
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3.

(a) Show that ∑
n≤x

1

n
= log x+ γ − {x} − 1/2

x
+O(x−2).

(b) Let ∆(x) be the error term in the approximation for the sum of the divisor function, so that∑
n≤x

τ(n) = x log x+ (2γ − 1)x+ ∆(x).

We proved in lectures that ∆(x) = O(x1/2). Prove the more precise estimate

∆(x) = x1/2 − 2
∑

a≤x1/2

{x
a

}
+O(1).

(c) Deduce that ∫ x

0

∆(t) dt� x

(so that, ‘on average’, ∆(x) = O(1)).

Solution: By partial summation as in lectures,∑
n≤x

1

n
=
bxc
x

+

∫ x

1

btc
t2

dt = log x+ γ − {x}
x

+

∫ ∞
x

{t}
t2

dt.

Since
∫∞
x

1
2t2 dt = 1

2x it suffices to show that∫ ∞
x

{t} − 1/2

t2
dt = O(x−2).

Note that, for any n ≥ 1, if t ∈ [n, n+ 1), then 1/n2 = 1/t2 +O(1/n3), and hence∫ n+1

n

{t} − 1/2

t2
dt =

1

n2

∫ 1

0

(t− 1
2 ) dt+O(n−3) = O(n−3).

It follows that for any m ≥ 1 ∫ ∞
m

{t} − 1/2

t2
dt =

∑
n≥m

O(n−3) = O(m−2).

The required bound follows letting m = dxe, since
∫ dxe
x

t−2 dt� x−2.
For part (b), the hyperbola method argument from lectures shows that∑

n≤x

τ(n) = 2
∑

a≤x1/2

⌊x
a

⌋
− bx1/2c2

= 2x

(
log x1/2 + γ − {x

1/2} − 1/2

x1/2
+O(x−1)

)
− 2

∑
a≤x1/2

{x/a} − (x1/2 − {x1/2})2

= x log x+ (2γ − 1)x− 2x1/2({x1/2} − 1
2 )− 2

∑
a≤x1/2

{x
a

}
+ 2x1/2{x1/2}+O(1)

= x log x+ (2γ − 1)x+ x1/2 − 2
∑

a≤x1/2

{x
a

}
+O(1).
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By definition then

∆(x) = x1/2 − 2
∑

a≤x1/2

{x
a

}
+O(1).

For part (c) we integrate this over [0, x] term by term. The first gives 2
3x

3/2. Integrating the O(1) term
trivially gives at most O(x). It therefore remains to show that∫ x

0

∑
a≤t1/2

{
t

a

}
dt = 1

3x
3/2 +O(x).

Interchanging the summation and integral, the left-hand side is∑
a≤x1/2

∫ x

a2

{
t

a

}
dt.

The integral of {t/a} over any interval of the form [ka, (k+ 1)a], where k is an integer, is a/2. It follows that∫ x

a2

{
t

a

}
dt =

x− a2

2
+O(a),

since the interval [a2, x] can be divided into bx−a
2

a c intervals of the shape [ka, (k + 1)a), with a remainder
O(a) in length leftover, and so

∑
a≤x1/2

∫ x

a2

{
t

a

}
dt =

x

2
bx1/2c − 1

2

∑
a≤x1/2

a2 +O(x) =
x3/2

2
− x3/2

6
+O(x),

using
∑
n≤y n

2 = 1
3y

3 +O(y2), and the proof is complete.

4. Prove the following Dirichlet series identities, and give for each a half-plane in which the identity is
valid.

(a)
∞∑
n=1

σ(n)

ns
= ζ(s)ζ(s− 1)

where σ(n) =
∑
d|n d,

(b)
∞∑
n=1

λ(n)

ns
=
ζ(2s)

ζ(s)

where λ(n) is the completely multiplicative function such that λ(p) = −1 for all primes p,

(c)
∞∑
n=1

τ(n)2

ns
=
ζ(s)4

ζ(2s)
,

(d) and
∞∑
n=1

s(n)

ns
=
ζ(2s)ζ(3s)

ζ(6s)

where s(n) is the indicator function for the square-full numbers, i.e.

s(n) =

{
1 if p | n implies p2 | n and

0 otherwise.
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Solution: For each identity there are two ways to proceed: either use the fact that FfFg = Ff?g, and
verify the corresponding identity for f ? g, or work with Euler products, if the coefficients of the Dirichlet
series are multiplicative. We will demonstrate each identity with one of these methods, but I encourage you
to try and reprove each with the other method.

Note that the Dirichlet series for ι(n) = n is

∞∑
n=1

n

ns
= ζ(s− 1)

and converges absolutely for σ > 2. Therefore since σ = 1 ? ι, the Dirichlet series is equal to ζ(s)ζ(s − 1)
and converges absolutely for σ > 2 (and this identity is valid in the same region).

For λ(n), we instead argue using Euler products. The Dirichlet series converges absolutely for σ > 1. In
this region

∞∑
n=1

λ(n)

ns
=
∏
p

(
1− 1

ps
+

1

p2s
− · · ·

)
=
∏
p

(
1 + p−s

)−1
.

Using (
1 + p−s

)−1
=

(1− p−s)
(1− p−2s)

we have
∞∑
n=1

λ(n)

ns
=
∏
p

(
1− p−2s

)−1∏
p

(
1− p−s

)
= ζ(2s)ζ(s)−1,

which is valid for σ > 1.
For (c), we will first express the multiplicative function τ(n)2 as a convolution. Suppose that τ(n)2 =

f ? g(n), where f and g are both multiplicative. We can actually cheat a little because we’re told in advance
what the Dirichlet series is. Let f(n) = τ4(n) = τ ? τ(n), and let g(n) = µ(m) if n = m2 and g(n) = 0
otherwise. Our claim is that τ(n)2 = f ? g(n). Since both sides are multiplicative, it suffices to check this
identity for prime powers. Note that f(pk) counts the number of n1 + n2 + n3 + n4 = k with ni ≥ 0, which
is
(
k+3
k

)
. Thus

f ? g(p) = f(p) =

(
4

1

)
= 4 = τ(p)2

and for k ≥ 2

f ? g(pk) = f(pk) + g(p2)f(pk−2) =

(
k + 3

k

)
−
(
k + 1

k − 2

)
= (k + 1)2.

Since the Dirichlet series coefficients of ζ(s)4 are f(n) and those of ζ(2s)−1 are g(n), it follows that

∞∑
n=1

τ(n)2

ns
= ζ(s)4 · 1

ζ(2s)
,

valid for σ > 1.
Finally, we use Euler products again, noting that s(n) is multiplicative. The Dirichlet series converges

absolutely for σ > 1, where

∞∑
n=1

s(n)

ns
=
∏
p

(
1 +

1

p2s
+

1

p3s
+ · · ·

)
=
∏
p

(
1 +

1

p2s − ps

)
.

The Dirichlet series identity now follows since

1 +
1

x2 − x
=

1− x−6

(1− x−2)(1− x−3)
,

and it is valid for σ > 1.
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5.

(a) Show that for 0 < σ < 1

ζ(s)Γ(s) =

∫ ∞
0

(
1

ex − 1
− 1

x

)
xs−1 dx.

(b) Show that for −1 < σ < 0

ζ(s)Γ(s) =

∫ ∞
0

(
1

ex − 1
− 1

x
+

1

2

)
xs−1 dx.

(c) Deduce the functional equation for ζ(s), using the identity

1

ex − 1
=

1

x
− 1

2
+ 2x

∞∑
n=1

1

4n2π2 + x2
.

Solution: Recall that in lectures we proved that for σ > 1,

ζ(s)Γ(s) =

∫ ∞
0

xs−1

ex − 1
dx.

The integral here does not converge for 0 < σ < 1, because the integrand blows up as we approach x = 0.
To remove this pole, note that for σ > 1, ∫ 1

0

xs−2 dx =
1

s− 1
,

and hence

ζ(s)Γ(s) =

∫ 1

0

(
1

ex − 1
− 1

x

)
xs−1 dx+

∫ ∞
1

xs−1

ex − 1
dx+

1

s− 1
,

which is valid for σ > 1. Since |ex − x− 1| ≤ |ex − 1| for 0 ≤ x ≤ 1, however, the first integral actually
converges for all σ > 0, and hence the right-hand side defines an analytic continuation of ζ(s)Γ(s) to the
half-plane σ > 0, with a simple pole at s = 1. The identity in (a) follows from the fact that

1

s− 1
= −

∫ ∞
1

xs−2 dx

when 0 < σ < 1. For the identity in (b) we do the same again, trying to remove the pole at s = 0 from the
integral between 0 and 1. To this end, note that∫ 1

0

1

2x
· xs−1 dx =

1

2s
,

and hence ∫ 1

0

(
1

ex − 1
− 1

x

)
xs−1 dx =

∫ 1

0

(
1

ex − 1
− 1

x
+

1

2

)
xs−1 dx− 1

2s
.

This is valid for σ > 0, but again, the integral on the right-hand side actually converges for σ > −1. To see
why (and to explain the mysterious 1/2 factor) note that we showed in lectures that

x

ex − 1
= 1− 1

2
x+

B2

2!
x2 + · · ·

and hence
1

ex − 1
=

1

x
− 1

2
+O(x).
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We have shown that for −1 < σ < 1

ζ(s)Γ(s) =

∫ 1

0

(
1

ex − 1
− 1

x
+

1

2

)
xs−1 dx− 1

2s
+

∫ ∞
1

(
1

ex − 1
− 1

x

)
xs−1 dx.

The identity in (b) follows from the fact that∫ ∞
1

1

2
xs−1 dx = − 1

2s

when −1 < σ < 0.
We will sketch a proof of (c). Substituting in the given series to the integral in part (b), and changing

the order of summation and integration (which can be justified by an appeal to uniform convergence of the
series in [ε,∞) for any ε > 0), we see that for −1 < σ < 0

ζ(s)Γ(s) = 2

∞∑
n=1

∫ ∞
0

xs

4n2π2 + x2
dx.

This integral can be explicitly calculate as∫ ∞
0

xs

4n2π2 + x2
dx =

(π/2)(2nπ)s−1

cos(πs/2)
.

Substituting this in we get

ζ(s)Γ(s) =
2s−1πs

cos(sπ/2)
ζ(1− s).

The conventional form of the functional equation follows using the reflection formula Γ(s)Γ(1− s) = π
sin(πs)

and the identity 2 cos(z) sin(z) = sin(2z). Finally, we sketch how to do the integral above. By a change of
variable it suffices to show that

I =

∫ ∞
0

ys

1 + y2
dy =

π/2

cos(πs/2)
.

Consider the semi-circular contour C of radius R, with a circular indentation around z = 0 of radius ε. We
define zs by taking the branch of the logarithm which is positive on the real axis. Since 1+z2 = i(z−i)(1+iz)

the integrand has a pole at z = i of residue −i
s+1

2 , and no other poles on or inside C. By the residue theorem∫
C

zs

1 + z2
dz = 2πi · −i

s+1

2
= πis.

The contribution from the two straight lines is

(1 + eiπs)

∫ R

ε

ys

1 + y2
dy.

The contribution from the large semicircle of radius R is O( Rσ

1+R2 · R) → 0 as R → ∞ since σ < 0, and the

contribution from the small semicircle of radius ε is O( εσ

1+ε2 · ε)→ 0 as ε→ 0 since σ > −1. Taking the limits
it follows that

(1 + eiπs)

∫ ∞
0

ys

1 + y2
dy = πis,

and the result follows after rearranging.
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