Analytic Number Theory Sheet 2 - Solutions

Lent Term 2020

1. For a Dirichlet series F'(s) = ) %2 let 0. have the property that F(s) converges for all s with o > o
and for no s with o < o.. Let o, have the property that F(s) converges absolutely if ¢ > o, and does not
converge absolutely if o < 0,. Show that

0c<0s< 0.+ 1.

Give examples to show that both 0. = 0, and 0.+ 1 = 0, are possible.

Solution: It is trivial that o, < o, since absolute convergence implies convergence. To show that o, <
o + 1 it suffices to show that if o > o, 4+ 1 then the Dirichlet series converges absolutely.

Let 0 = 0. + 1 + 2¢. By assumption the series > a,n~ ¢~ ¢ is convergent. In particular, the summands
tend to zero, and are there bounded, and so a,, < n°¢T¢. Therefore
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and so the Dirichlet series converges absolutely at s as required, and o, < o, + 1.

The Riemann zeta function itself (a,, = 1) shows that 0. = o, is possible. An example where o.+1 =0,
is the similar function

n(s) = Z(_ZLA

Obviously o, = 1, so it suffices to show that this Dirichlet series converges whenever o > 0. This can be
justified by an appeal to one of several general analytic results (for example, the alternating series test,
since it suffices to show that it converges for real o > 0), but here’s a direct demonstration using partial
summation.

Partial summation gives that, with A(z) =1 if |z] is odd and 0 otherwise,
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Since A(z) = O(1) this integral converges absolutely when o > 0, and hence the sum converges and we’re
done. The alternating series test implies that this converges whenever s > 0 is real.

Taking the limit as x — oo implies

2. For fixed 0 € R let v(o) denote the infimum of those exponents v such that ((o + it) < [t|” for all
[t| > 4. (The Lindel6f hypothesis is the conjecture that v(1/2) = 0.)

(a) Show that v(o) =0 for o > 1.
(b) Show that v(o) <1—ocfor0<o <1.

(¢) Show that v(o) = v(1 — o) + 1/2 — o, and in particular v(o) = 1/2 — o for 0 < 0. (You may use
Stirling’s approximation, that [I'(s)| < t7~/2e="/2 as t — oo for ¢ uniformly bounded.)



Solution: The Dirichlet series represention and the triangle inequality immediately imply that |((c + it)| <
|¢(0)] < oo. This demonstrates v(o) < 0 for ¢ > 1. That v(o) < 0 for ¢ = 1 is covered by part (b). We also
need to show that v(c) > 0 for o > 1. For this, recall that for o > 1 we have

( M:?) ¢(s)=1.

The left-hand side is at most (o) |¢(s)|, and therefore |((s)| > 1/{(o) > 1. This shows v(o) > 0 for o > 1.
Showing that v(1) > 0 is a little tricky. It follows from the fact that v(¢) is a continuous function, which
is a simple consequence of the Phragmén-Lindelof principle, a generalisation of the maximum modulus
principle. Here is a direct proof using what we have shown in the course.
First note that by looking at the Dirichlet series when o > 1

log ((s)] < ﬁ)gn—“ = log ((0).

Therefore, since |((0)| < (o — 1)~ if we choose o ~ 1+ 1/(logT)?, say, then [log ((o + iT)| < 2loglogT +
O(1) (for some T > 2). Furthermore,

log {(o +4T) —log (1 +iT) = /U g(a—i—it) do,
1

which is permissible since there are no zeros of ((s) on the line ¢ = 1. By Lemma 25 of the course there
are arbitrarily large T such that the integrand is this is < (log T')?, and hence the integral overall is O(1),
and so |log ((1 4 4T)| < 2loglogT + O(1). Since log(1/|¢|) = —Rlog( it follows that log(1/|¢(1 +T)|) <
2loglog T + O(1), and hence |((1 + iT)| > (log T)~2. Since this holds for arbitrarily large 7T, it follows that
v(1) > 0 as required.

For part (b) recall that Lemma 20 provided the estimate

((s) < (L+t]'~7) log |t

which holds uniformly for 0 < § < o <2 and [¢| > 4, say. This immediately implies that v(c) <1 — o when
0<o< 1.

Finally, we will use the functional equation for part (c). The functional equation implies that there is
some constant C, > 0 such that

|¢(o +it)] = Cy |sin(ws/2)| IT(1 — o —it)| |¢(1 — o — it)].
Stirling’s approximation as given in the hint implies that
IC(0 4 it)| =4 |sin(ms/2)| 7~ 2e™/2|¢(1 — 0 —it)].

v(l—o)+e

For any € > 0 the bound [¢(1 — o — it)| < |t] , and hence

K(U + ZtL)| Lo |sin(7rs/2)| to’—l/2+u(l—0’)+66—ﬂ't/2 < to—l/2+u(1—a)+e

and hence by definition v(o) < v(1 — o) + 0 — 1/2. Replacing o by 1 — ¢ also implies that v(1 — o) <
v(o) +1/2 — o, and hence v(o) = v(1 — o) + 0 — 1/2 as required.

3.
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Hint: Use the fact that 3_,,, p(d) =0 if n > 1.



Solution: Using the given hint, we can write

1 1(d)
Z a2h? Z Zld\ald\bazbr
a,b>1 a,b>1d>1
(a,b)=1
Changing the order of summation and writing a = dn and b = dm this is
Z p(d) Z 1 _ ¢(2)?
d* n2m?2 ¢(4)”

d>1 n,m>1

Using the values ((2) = %2 and ((4) = g—g proved in lectures gives the result.

4. Sketch a proof that if s # 1 and ((s) # 0 then, if x is not an integer,
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Solution: We can follow the proof of the explicit formula given in lectures very closely, just making the
adjustment that we are considering the Dirichlet series with coefficients A(n)/n® instead of A(n). This can

be written as f%(u + s), and hence by Perron’s formula,
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for some suitable (. It is important to make a suitable choice of og. We need it to be > 0 to apply Perron’s
formula, and also > 1 — ¢ so that the Dirichlet series converges absolutely. Because we aren’t too concerned
with the error terms, we have a lot of freedom over how we choose o (e.g. we don’t need to worry about the
1/log x factor in the proof from lectures, which was a result of trying to keep the error terms small). Since
we're going to take the limit 7' — oo the dependence on x can afford to be quite weak. A suitable choice is,
for example, 0p = max(1,2 — o).

The poles coming from % occur at 1 —s, p— s for zeros of ((s) in the critical strip, and —2k — s for k > 1
coming from the trivial zeros. By assumption none of these are zero, so they are not also poles of the z*/u
term, which allows for the residues to be calculated in the same fashion. The other pole is at © = 0 which
has Cf,(s) as a residue (again, note that is well-defined by assumption on s).

(a) Using elementary methods show that

Z A(n) L%J =zlogx + O(x).

(b) Deduce that
A g,
n

n<zx

Compare this to the result of Question 4 as s — 1.



Solution: Using |z] =3 1

3 A() L%J =S Am) Y 1= 3 Am) =Y 1xAR) =Y logk.

n<x n<x m<z/n nm<z k<z k<z

The right-hand side is 2 logx + O(z) by partial summation, which concludes part (a).
For part (b), replacing |z/n] by z/n introduces an error of O(¢(z)) = O(z) by Chebyshev’s estimates.

It follows that A
Z Am) =logz + O(1).
n
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Consider the expression in question 4 for real s > 1, and what happens to each term as s — 1 from the
right. The term z17%/1 — s approaches a pole at s = 1, around which it can be expanded as 1/(1 — s) +
logz + O(s — 1). This is cancelled out by the pole of ¢’/{(s) which is 1/(1 — s) + O(1) around s = 1. The

1+1/£) — % for > 1. This therefore implies that
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Since the zeros have a symmetry about p +— 1 — p in the critical strip by the functional equation we can

write this as A )
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and hence for any 0 <y < 1,
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If we are a little more precise, and use the fact that ((s) = + v+ O(s — 1) we in fact see that, for any

z>1,

6.
(a) Show that if o > 0 and k > 1 then

L Vg
2me 0 ify <1.

o—100

1 o+ic0 s {(logy)k if Yy > 1 and

(b) Give an explicit formula for any k& > 1 for

sketching a proof of the formula you give.
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Solution: Part (a) is a simple adaptation of evaluation of the integral fo ds as presented in lectures.
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The only differences are that the residue at the pole at s = 0 is now (logy)*/k!, and that the integral can now
be evaluated at y = 1 for £ > 1 because the integral over the ‘error sides’ of the rectangle decays sufficiently
quickly. Alternatively, the case y = 1 can be deduced from the cases y > 1 and y < 1 since the right-hand

side approaches the same limit 0 as y tends to 1 from the right or the left.



We can then use this to derive an explicit formula for the sum given. As usual, adapting Perron’s formula
in the obvious fashion,
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for any oo > 1. The pole at s = 0 contributes # where F(s) = %( s)z®.
The pole at s =1 contributes x. The pole from each trivial zero s = —2m contributes
z72m
(—2m)k+1"

Similarly, the pole from each zero in the critical strip contributes
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Altogether, then,

ZA (log a:/n)) = k! (x—z pf“ - Z 2;n k+1> :
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The term F*)(0) can be expanded out if desired as

co(logz)® + ci(logz)* ™t + - 4 ¢

/

where ¢y = %(O) = log 2, for example, and ¢; = k(%)'(()), and so on.



