
Analytic Number Theory Sheet 2 - Solutions

Lent Term 2020

1. For a Dirichlet series F (s) =
∑ an

ns let σc have the property that F (s) converges for all s with σ > σc
and for no s with σ < σc. Let σa have the property that F (s) converges absolutely if σ > σa and does not
converge absolutely if σ < σa. Show that

σc ≤ σa ≤ σc + 1.

Give examples to show that both σc = σa and σc + 1 = σa are possible.

Solution: It is trivial that σc ≤ σa, since absolute convergence implies convergence. To show that σa ≤
σc + 1 it suffices to show that if σ > σc + 1 then the Dirichlet series converges absolutely.

Let σ = σc + 1 + 2ε. By assumption the series
∑
ann

−σc−ε is convergent. In particular, the summands
tend to zero, and are there bounded, and so an � nσc+ε. Therefore∑ |an|

|ns|
=
∑ |an| /nσc+ε

n1+ε
�
∑ 1

n1+ε
� 1,

and so the Dirichlet series converges absolutely at s as required, and σa ≤ σc + 1.
The Riemann zeta function itself (an ≡ 1) shows that σc = σa is possible. An example where σc+ 1 = σa

is the similar function

η(s) =

∞∑
n=1

(−1)n−1

ns
.

Obviously σa = 1, so it suffices to show that this Dirichlet series converges whenever σ > 0. This can be
justified by an appeal to one of several general analytic results (for example, the alternating series test,
since it suffices to show that it converges for real σ > 0), but here’s a direct demonstration using partial
summation.

Partial summation gives that, with A(x) = 1 if bxc is odd and 0 otherwise,∑
1≤n≤x

(−1)n−1

ns
=
A(x)

xs
+ s

∫ x

1

A(x)

xs+1
dx.

Taking the limit as x→∞ implies

∞∑
n=1

(−1)n−1

ns
= s

∫ ∞
1

A(x)

xs+1
dx.

Since A(x) = O(1) this integral converges absolutely when σ > 0, and hence the sum converges and we’re
done. The alternating series test implies that this converges whenever s > 0 is real.

2. For fixed σ ∈ R let ν(σ) denote the infimum of those exponents ν such that ζ(σ + it) � |t|ν for all
|t| ≥ 4. (The Lindelöf hypothesis is the conjecture that ν(1/2) = 0.)

(a) Show that ν(σ) = 0 for σ ≥ 1.

(b) Show that ν(σ) ≤ 1− σ for 0 < σ ≤ 1.

(c) Show that ν(σ) = ν(1 − σ) + 1/2 − σ, and in particular ν(σ) = 1/2 − σ for σ ≤ 0. (You may use
Stirling’s approximation, that |Γ(s)| � tσ−1/2e−πt/2 as t→∞ for σ uniformly bounded.)

1



Solution: The Dirichlet series represention and the triangle inequality immediately imply that |ζ(σ + it)| ≤
|ζ(σ)| <∞. This demonstrates ν(σ) ≤ 0 for σ > 1. That ν(σ) ≤ 0 for σ = 1 is covered by part (b). We also
need to show that ν(σ) ≥ 0 for σ ≥ 1. For this, recall that for σ > 1 we have( ∞∑

n=1

µ(n)

ns

)
ζ(s) = 1.

The left-hand side is at most ζ(σ) |ζ(s)|, and therefore |ζ(s)| ≥ 1/ζ(σ)� 1. This shows ν(σ) ≥ 0 for σ > 1.
Showing that ν(1) ≥ 0 is a little tricky. It follows from the fact that ν(σ) is a continuous function, which

is a simple consequence of the Phragmén-Lindelöf principle, a generalisation of the maximum modulus
principle. Here is a direct proof using what we have shown in the course.

First note that by looking at the Dirichlet series when σ > 1

|log ζ(s)| ≤
∑ Λ(n)

log n
n−σ = log ζ(σ).

Therefore, since |ζ(σ)| � (σ− 1)−1, if we choose σ ≈ 1 + 1/(log T )2, say, then |log ζ(σ + iT )| ≤ 2 log log T +
O(1) (for some T ≥ 2). Furthermore,

log ζ(σ + iT )− log ζ(1 + iT ) =

∫ σ

1

ζ ′

ζ
(σ + it) dσ,

which is permissible since there are no zeros of ζ(s) on the line σ = 1. By Lemma 25 of the course there
are arbitrarily large T such that the integrand is this is � (log T )2, and hence the integral overall is O(1),
and so |log ζ(1 + iT )| ≤ 2 log log T + O(1). Since log(1/ |ζ|) = −< log ζ it follows that log(1/ |ζ(1 + iT )|) ≤
2 log log T +O(1), and hence |ζ(1 + iT )| � (log T )−2. Since this holds for arbitrarily large T , it follows that
ν(1) ≥ 0 as required.

For part (b) recall that Lemma 20 provided the estimate

ζ(s)� (1 + |t|1−σ) log |t|

which holds uniformly for 0 < δ ≤ σ ≤ 2 and |t| ≥ 4, say. This immediately implies that ν(σ) ≤ 1− σ when
0 < σ ≤ 1.

Finally, we will use the functional equation for part (c). The functional equation implies that there is
some constant Cσ > 0 such that

|ζ(σ + it)| = Cσ |sin(πs/2)| |Γ(1− σ − it)| |ζ(1− σ − it)| .

Stirling’s approximation as given in the hint implies that

|ζ(σ + it)| �σ |sin(πs/2)| tσ−1/2e−πt/2 |ζ(1− σ − it)| .

For any ε > 0 the bound |ζ(1− σ − it)| � |t|ν(1−σ)+ε, and hence

|ζ(σ + it)| �σ,ε |sin(πs/2)| tσ−1/2+ν(1−σ)+εe−πt/2 � tσ−1/2+ν(1−σ)+ε

and hence by definition ν(σ) ≤ ν(1 − σ) + σ − 1/2. Replacing σ by 1 − σ also implies that ν(1 − σ) ≤
ν(σ) + 1/2− σ, and hence ν(σ) = ν(1− σ) + σ − 1/2 as required.

3. ∑
a,b≥1
(a,b)=1

1

a2b2
=

5

2
.

Hint: Use the fact that
∑
d|n µ(d) = 0 if n > 1.
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Solution: Using the given hint, we can write∑
a,b≥1
(a,b)=1

1

a2b2
=
∑
a,b≥1

∑
d≥1

1d|a1d|b
µ(d)

a2b2
.

Changing the order of summation and writing a = dn and b = dm this is∑
d≥1

µ(d)

d4

∑
n,m≥1

1

n2m2
=
ζ(2)2

ζ(4)
.

Using the values ζ(2) = π2

6 and ζ(4) = π4

90 proved in lectures gives the result.

4. Sketch a proof that if s 6= 1 and ζ(s) 6= 0 then, if x is not an integer,

∑
n≤x

Λ(n)

ns
=
x1−s

1− s
− lim
T→∞

∑
ρ

|γ|≤T

xρ−s

ρ− s
− ζ ′

ζ
(s) +

∞∑
k=1

x−2k−s

2k + s
.

Solution: We can follow the proof of the explicit formula given in lectures very closely, just making the
adjustment that we are considering the Dirichlet series with coefficients Λ(n)/ns instead of Λ(n). This can

be written as − ζ
′

ζ (u+ s), and hence by Perron’s formula,

∑
n≤x

Λ(n)

ns
= − 1

2πi

∫ σ0+i∞

σ0−i∞

ζ ′

ζ
(u+ s)

xu

u
du

for some suitable σ0. It is important to make a suitable choice of σ0. We need it to be > 0 to apply Perron’s
formula, and also > 1− σ so that the Dirichlet series converges absolutely. Because we aren’t too concerned
with the error terms, we have a lot of freedom over how we choose σ0 (e.g. we don’t need to worry about the
1/ log x factor in the proof from lectures, which was a result of trying to keep the error terms small). Since
we’re going to take the limit T →∞ the dependence on x can afford to be quite weak. A suitable choice is,
for example, σ0 = max(1, 2− σ).

The poles coming from ζ′

ζ occur at 1− s, ρ− s for zeros of ζ(s) in the critical strip, and −2k− s for k ≥ 1

coming from the trivial zeros. By assumption none of these are zero, so they are not also poles of the xu/u
term, which allows for the residues to be calculated in the same fashion. The other pole is at u = 0 which

has ζ′

ζ (s) as a residue (again, note that is well-defined by assumption on s).

5.

(a) Using elementary methods show that∑
n≤x

Λ(n)
⌊x
n

⌋
= x log x+O(x).

(b) Deduce that ∑
n≤x

Λ(n)

n
∼ log x.

Compare this to the result of Question 4 as s→ 1.
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Solution: Using bxc =
∑
n≤x 1∑

n≤x

Λ(n)
⌊n
x

⌋
=
∑
n≤x

Λ(n)
∑

m≤x/n

1 =
∑
nm≤x

Λ(n) =
∑
k≤x

1 ? Λ(k) =
∑
k≤x

log k.

The right-hand side is x log x+O(x) by partial summation, which concludes part (a).
For part (b), replacing bx/nc by x/n introduces an error of O(ψ(x)) = O(x) by Chebyshev’s estimates.

It follows that ∑
n≤x

Λ(n)

n
= log x+O(1).

Consider the expression in question 4 for real s > 1, and what happens to each term as s→ 1 from the
right. The term x1−s/1 − s approaches a pole at s = 1, around which it can be expanded as 1/(1 − s) +
log x + O(s − 1). This is cancelled out by the pole of ζ ′/ζ(s) which is 1/(1 − s) + O(1) around s = 1. The

final term is 1
2 log

(
1+1/x
1−1/x

)
− 1

x for x > 1. This therefore implies that

O(1) =
∑
ρ

xρ−1

ρ− 1
+

1

2
log

(
1 + 1/x

1− 1/x

)
.

Since the zeros have a symmetry about ρ 7→ 1 − ρ in the critical strip by the functional equation we can
write this as

O(1) = −
∑
ρ

x−ρ

ρ
+

1

2
log

(
1 +

2

x− 1

)
,

and hence for any 0 < y < 1, ∑
ρ

yρ

ρ
= O(1) +

1

2
log

(
1 +

2y

1− y

)
.

If we are a little more precise, and use the fact that ζ(s) = 1
s−1 + γ + O(s− 1) we in fact see that, for any

x > 1, ∑
n≤x

Λ(n)

n
= log x+

∑
ρ

x−ρ

ρ
− γ − 1

x
+

1

2
log

(
x+ 1

x− 1

)
.

6.

(a) Show that if σ > 0 and k ≥ 1 then

1

2πi

∫ σ+i∞

σ−i∞

ys

sk+1
ds =

{
(log y)k

k! if y ≥ 1 and

0 if y ≤ 1.

(b) Give an explicit formula for any k ≥ 1 for∑
n≤x

Λ(n)
(

log
x

n

)k
,

sketching a proof of the formula you give.

Solution: Part (a) is a simple adaptation of evaluation of the integral
∫ σ+i∞
σ−i∞

ys

s ds as presented in lectures.

The only differences are that the residue at the pole at s = 0 is now (log y)k/k!, and that the integral can now
be evaluated at y = 1 for k ≥ 1 because the integral over the ‘error sides’ of the rectangle decays sufficiently
quickly. Alternatively, the case y = 1 can be deduced from the cases y > 1 and y < 1 since the right-hand
side approaches the same limit 0 as y tends to 1 from the right or the left.
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We can then use this to derive an explicit formula for the sum given. As usual, adapting Perron’s formula
in the obvious fashion,

1

k!

∑
n≤x

Λ(n)
(

log
x

n

)k
= − 1

2πi

∫ σ0+i∞

σ0−i∞

ζ ′

ζ
(s)

xs

sk+1
ds

for any σ0 > 1. The pole at s = 0 contributes −F
(k)(0)
k! where F (s) = ζ′

ζ (s)xs.
The pole at s = 1 contributes x. The pole from each trivial zero s = −2m contributes

− x−2m

(−2m)k+1
.

Similarly, the pole from each zero in the critical strip contributes

− xρ

ρk+1
.

Altogether, then,

∑
n≤x

Λ(n) (log(x/n))
k

= k!

(
x−

∑
ρ

xρ

ρk+1
− F (k)(0)

k!
−
∞∑
m=1

x−2m

(−2m)k+1

)
.

The term F (k)(0) can be expanded out if desired as

c0(log x)k + c1(log x)k−1 + · · ·+ ck

where c0 = ζ′

ζ (0) = log 2π, for example, and c1 = k( ζ
′

ζ )′(0), and so on.
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