Analytic Number Theory Sheet 3

Lent Term 2020

1.  Using the fact that {(s) has no zeros in the region o > 1 — ¢/log|t| and |¢t| > 2 prove that, all in this
same region,

(a)

/
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Hint: Use Dirichlet series to handle o > 14 1/log|t| and apply the formula for % in terms of the
zeros of ((s) to handle the remaining region.

(b)
llog ¢(s)| < loglog |t| + O(1),
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Solution: When o > 1,
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which provides the required estimate when o > 1+ 1/log|t|. Otherwise we use the fact that
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uniformly in the region 5/6 < o < 2 and [¢| > 2, where the sum is over all zeros p such that |p — (3/2 + it)| <
5/6.
Let s = 0 + it where 1 — ¢/2log |t| < 0 <1+ 1/log |t|. Taking the difference of the above equation
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where s1 = 14 1/log|t| 4+ it. By the first part of the solution the first term is O(log |t|). By the zero-free
region all of the zeros in the sum are a reasonable distance away from s, so in particular, |s — p| =< |s1 — p|
for all such p. Therefore
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By the formula again
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and we are done.
For part (b), in the region o > 1+ 1/log |t|, by the Dirichlet series representation we get the estimate

[log {(s)] <« Z f(\)(gn?in" =log((o) <log(1+1/(c — 1)) <loglog|t| + O(1).
n=2

Again, for the region 1 — ¢/2log|t| < 0 <1+ 1/log|t| we consider s; =1+ 1/log|t| + it and the difference
log ¢(s) — log {(s1) to extend the estimate for s; down to s. In this case we use the identity that
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which is valid since there are no zeros of ((s) on the line. By part (a) this difference is O(1) and we are
done.

For part (c¢) we simply note that log1/|((s)| = —Rlog((s), and so 1/{(s) < log |t| follows immediately
from part (b).

log ((s) —logC(s1) = [ (2)dz,

2. Show that if |¢| > 4 then the number of zeros of ((s) in the disc of radius r around 1+ it is O(r log|¢|)
for all r < 3/4. Hint: Again, use the formula for % in terms of its zeros and take real parts at s = 141 +it.

Solution: Observe that if r < ¢/log|t| for some sufficiently small constant ¢ > 0 then there are in fact no
zeros in the disc of radius r around 1 + ¢t by the zero-free region, so the estimate certainly holds for such
small 7. On the other hand, for large r, say 1/6 < r < 3/4 we can use Jensen’s inequality with the function
f(z) =C(2+it + z).

The tricky part is the region ¢/log |t| <7 < 1/6. As in the solution to la) the formula for % in terms of
zeros yields
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where s; = 1 + r + it, where the sum is over all zeros p such that |p — (3/2 +it)| < 5/6. Each term is
non-negative, and those zeros in the disc of radius r around 1 + it contribute at least 1/2r, say, and so the
number of zeros is O(rlog |t|) as required.

3. If we arrange the non-trivial zeros of the Riemann zeta function in the upper half-plane as p,, = o, +iv,

where 0 < 3 <y < --- then show that
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Deduce that |71>| = 00.
Solution:  We use the asymptotic formula

1
N(T) ~ ﬂT logT.

In particular,
1
n = Nlw) = (14 0(1)) 570 log 7.
In particular, for sufficiently large n, v, < n, and so loglog~, < loglogn. Taking logarithms

log v, + O(1) + loglog v, = logn
and so logy, = (1 + o(1)) logn. It follows that
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In particular, since |p,| < 1+ |y,| < n/logn,
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4.  Show that there exists some constant C' > 0 such that there is no vertical gap greater than C between
successive zeros of ((s), that is,
N(T+C)-N(T)>0

for all sufficiently large T'.

Solution:  Recall the asymptotic formula

T T T
N(T) = %log% —54—1-~3(T)7

say, where R(T) < logT. The first term is easier to deal with if we write
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If we take the difference then

1 T+C

N(T+C)—N(T):—/ log—dt+ R(T + C) — R(T).
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The first term is trivially at least % log % Provided we choose C sufficiently large, and T' > C, say, the

error terms are in absolute value

c T
[R(T +C) = R(T)| < 3~ log .

and the estimate follows.

5. Let M(z) =3, ., p(n)." Let © =sup{o : ((o +it) = 0}.

(a) Show that M(z) = Q4 (x7°) for every oy < O.

(b) If there is a simple zero of ((s) at p = © + it then show that M (z) = Q4 (z®).

(c) If there is a zero of {(s) of multiplicity m > 2 at p = © + it then show that
M(z) = Qi (2 (log z)™ ).

In particular, if we could prove that M(z) = O(z'/?) then we’d get both the Riemann hypothesis and
also that all zeros of ((s) are simple! Hint: Consider the function %(5) — c% for some constant

c> 0.

Solution:  We mimic the proofs for ¢)(z) given in lectures.
For part (a), fix o9 < ©, and suppose that for all sufficiently large , we have the estimate M (z) < cz°°,
where c is a constant. Consider the function

F(s) = /100 (cx” — M(z))z~*da.

This integral obviously converges absolutely in the half-plane ¢ > 1, and it is of the form floo A(z)z—* dx
where A(x) > 0 for all large enough 2, so we can apply Landau’s lemma.
In the half-plane ¢ > 1 we calculate that

c 1

F(s) = o +T(S).

This has a pole at s = g, but otherwise there are no poles for real s > 0. By Landau’s lemma there are no
poles for any s with real part > og, which contradicts the choice of og, since by the definition of © there is
a zero of ((s) wih real part > oy.

IMertens conjectured in 1897 that |M(z)| < x'/2 for all z > 1. This was disproved by Odlyzko and te Riele in 1984.



It follows that for any fixed ¢ > 0 we have M (z) > cx° for arbitrarily large x. Similarly M (x) < —cz°,
and so M(x) = Q4 (z7°) as required.

For part (b), suppose that there is a simple zero of {(s) at p = © + it, and let ¢ > 0 be a constant to be
chosen later. Suppose that M (z) < ca® for all large enough , and consider the function

/100 (cx® — M(2)) (1 + cos(0 — tlogz))z™* ' da

where 0 € [0,27) will be chosen later. On one hand this is (in the half-plane o > 1)

F(s)+ e F (s + it) —l—Qe’ieF(s — it) .

Note that F' has poles at © and at zeros of ((s). It follows that, on the real line, there are no poles for
s > 0, and at s = O there is a pole with residue
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where ((s) = c1(s — p) + O((s — p)?) for s close to p, and ¢; # 0 (since by assumption p is a simple zero).

On the other hand, as in the proof given in lectures, from the integral expression we see that the integral
is > —C for some absolute constant C' as s — O from the right along the real axis. It follows that the residue
of the pole at © is > 0, and thus we have a contradiction if we choose @ such that ¢’ /c;p = —1/ |c1p| and
choose ¢ = 1/2|c1p|. Thus M(x) > ca® for arbitrarily large x, and similarly M (z) < —caz® for arbitrarily
large z, and so M (z) = Q4 (2®).

For part (c), suppose that M (z) < cx®(logz)™~! for all sufficiently large x, where ¢ will be chosen later.
As the hint suggests, we consider the integral

F(s) = /100 (cx@(log )"t — M(z)) 2 da

which converges absolutely for ¢ > 1 to

c¢(m —1)! 1

(s—©)™  s¢(s)
As above, if we multiply the integrand by (14 cos(6 —tlogz)) then we arrive at a function with non-negative
integrand which has, for a suitable choice of 8 and ¢, a pole of order m with negative residue at s = O,
which contradicts the fact that the integral stays bounded away from —oco as s — O along the real axis.
This contradiction, and a similar argument with the signs reversed, shows that M (z) = Q4 (2 (logz)™~1)
as required.




