
Analytic Number Theory Sheet 3

Lent Term 2020

1. Using the fact that ζ(s) has no zeros in the region σ > 1− c/ log |t| and |t| ≥ 2 prove that, all in this
same region,

(a)
ζ ′

ζ
(s)� log |t|

Hint: Use Dirichlet series to handle σ > 1 + 1/ log |t| and apply the formula for ζ′

ζ in terms of the

zeros of ζ(s) to handle the remaining region.

(b)
|log ζ(s)| ≤ log log |t|+O(1),

(c)
1

ζ(s)
� log |t| .

Solution: When σ > 1, ∣∣∣∣ζ ′ζ (s)

∣∣∣∣ ≤∑
n

Λ(n)

nσ
� 1

σ − 1
,

which provides the required estimate when σ ≥ 1 + 1/ log |t|. Otherwise we use the fact that

ζ ′

ζ
(s) =

∑
ρ

1

s− ρ
+O(log |t|)

uniformly in the region 5/6 ≤ σ ≤ 2 and |t| ≥ 2, where the sum is over all zeros ρ such that |ρ− (3/2 + it)| ≤
5/6.

Let s = σ + it where 1− c/2 log |t| < σ ≤ 1 + 1/ log |t|. Taking the difference of the above equation

ζ ′

ζ
(s) =

ζ ′

ζ
(s1) +

∑
ρ

(
1

s− ρ
− 1

s1 − ρ

)
+O(log |t|),

where s1 = 1 + 1/ log |t| + it. By the first part of the solution the first term is O(log |t|). By the zero-free
region all of the zeros in the sum are a reasonable distance away from s, so in particular, |s− ρ| � |s1 − ρ|
for all such ρ. Therefore

1

s− ρ
− 1

s1 − ρ
� 1

|s1 − ρ|2 log |t|
� < 1

s1 − ρ
.

By the formula again
ζ ′

ζ
(s1) =

∑
ρ

1

s1 − ρ
+O(log |t|)

and hence ∑
ρ

< 1

s1 − ρ
� log |t|
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and we are done.
For part (b), in the region σ ≥ 1 + 1/ log |t|, by the Dirichlet series representation we get the estimate

|log ζ(s)| �
∞∑
n=2

Λ(n)

log n
n−σ = log ζ(σ) < log(1 + 1/(σ − 1)) ≤ log log |t|+O(1).

Again, for the region 1− c/2 log |t| < σ ≤ 1 + 1/ log |t| we consider s1 = 1 + 1/ log |t|+ it and the difference
log ζ(s)− log ζ(s1) to extend the estimate for s1 down to s. In this case we use the identity that

log ζ(s)− log ζ(s1) =

∫ s

s1

ζ ′

ζ
(z) dz,

which is valid since there are no zeros of ζ(s) on the line. By part (a) this difference is O(1) and we are
done.

For part (c) we simply note that log 1/ |ζ(s)| = −< log ζ(s), and so 1/ζ(s) � log |t| follows immediately
from part (b).

2. Show that if |t| ≥ 4 then the number of zeros of ζ(s) in the disc of radius r around 1 + it is O(r log |t|)
for all r ≤ 3/4. Hint: Again, use the formula for ζ′

ζ in terms of its zeros and take real parts at s = 1 + r+ it.

Solution: Observe that if r ≤ c/ log |t| for some sufficiently small constant c > 0 then there are in fact no
zeros in the disc of radius r around 1 + it by the zero-free region, so the estimate certainly holds for such
small r. On the other hand, for large r, say 1/6 < r ≤ 3/4 we can use Jensen’s inequality with the function
f(z) = ζ(2 + it+ z).

The tricky part is the region c/ log |t| ≤ r ≤ 1/6. As in the solution to 1a) the formula for ζ′

ζ in terms of
zeros yields ∑

ρ

< 1

s1 − ρ
� log |t|

where s1 = 1 + r + it, where the sum is over all zeros ρ such that |ρ− (3/2 + it)| ≤ 5/6. Each term is
non-negative, and those zeros in the disc of radius r around 1 + it contribute at least 1/2r, say, and so the
number of zeros is O(r log |t|) as required.

3. If we arrange the non-trivial zeros of the Riemann zeta function in the upper half-plane as ρn = σn+iγn
where 0 < γ1 ≤ γ2 ≤ · · · then show that

γn ∼
2πn

log n
.

Deduce that
∑
ρ

1
|ρ| =∞.

Solution: We use the asymptotic formula

N(T ) ∼ 1

2π
T log T.

In particular,

n = N(γn) = (1 + o(1))
1

2π
γn log γn.

In particular, for sufficiently large n, γn ≤ n, and so log log γn � log log n. Taking logarithms

log γn +O(1) + log log γn = log n

and so log γn = (1 + o(1)) log n. It follows that

γn ∼
2πn

log n
.

In particular, since |ρn| � 1 + |γn| � n/ log n,∑
ρ

1

|ρ|
�
∑
n

log n

n
=∞.
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4. Show that there exists some constant C > 0 such that there is no vertical gap greater than C between
successive zeros of ζ(s), that is,

N(T + C)−N(T ) > 0

for all sufficiently large T .

Solution: Recall the asymptotic formula

N(T ) =
T

2π
log

T

2π
− T

2π
+R(T ),

say, where R(T )� log T . The first term is easier to deal with if we write

T

2π
log

T

2π
− T

2π
=

1

2π

∫ T

0

log
t

2π
dt.

If we take the difference then

N(T + C)−N(T ) =
1

2π

∫ T+C

T

log
t

2π
dt+R(T + C)−R(T ).

The first term is trivially at least C
2π log T

2π . Provided we choose C sufficiently large, and T ≥ C, say, the
error terms are in absolute value

|R(T + C)−R(T )| < C

2π
log

T

2π
,

and the estimate follows.

5. Let M(x) =
∑
n≤x µ(n).1 Let Θ = sup{σ : ζ(σ + it) = 0}.

(a) Show that M(x) = Ω±(xσ0) for every σ0 < Θ.

(b) If there is a simple zero of ζ(s) at ρ = Θ + it then show that M(x) = Ω±(xΘ).

(c) If there is a zero of ζ(s) of multiplicity m ≥ 2 at ρ = Θ + it then show that

M(x) = Ω±(xΘ(log x)m−1).

In particular, if we could prove that M(x) = O(x1/2) then we’d get both the Riemann hypothesis and

also that all zeros of ζ(s) are simple! Hint: Consider the function 1
sζ(s) − c

(m−1)!
(s−Θ)m for some constant

c > 0.

Solution: We mimic the proofs for ψ(x) given in lectures.
For part (a), fix σ0 < Θ, and suppose that for all sufficiently large x, we have the estimate M(x) ≤ cxσ0 ,

where c is a constant. Consider the function

F (s) =

∫ ∞
1

(cxσ0 −M(x))x−s−1 dx.

This integral obviously converges absolutely in the half-plane σ > 1, and it is of the form
∫∞

1
A(x)x−s dx

where A(x) ≥ 0 for all large enough x, so we can apply Landau’s lemma.
In the half-plane σ > 1 we calculate that

F (s) =
c

s− σ0
+

1

sζ(s)
.

This has a pole at s = σ0, but otherwise there are no poles for real s > 0. By Landau’s lemma there are no
poles for any s with real part > σ0, which contradicts the choice of σ0, since by the definition of Θ there is
a zero of ζ(s) wih real part > σ0.

1Mertens conjectured in 1897 that |M(x)| ≤ x1/2 for all x ≥ 1. This was disproved by Odlyzko and te Riele in 1984.
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It follows that for any fixed c > 0 we have M(x) > cxσ0 for arbitrarily large x. Similarly M(x) < −cxσ0 ,
and so M(x) = Ω±(xσ0) as required.

For part (b), suppose that there is a simple zero of ζ(s) at ρ = Θ + it, and let c > 0 be a constant to be
chosen later. Suppose that M(x) ≤ cxΘ for all large enough x, and consider the function∫ ∞

1

(
cxΘ −M(x)

)
(1 + cos(θ − t log x))x−s−1 dx

where θ ∈ [0, 2π) will be chosen later. On one hand this is (in the half-plane σ > 1)

F (s) +
eiθF (s+ it) + e−iθF (s− it)

2
.

Note that F has poles at Θ and at zeros of ζ(s). It follows that, on the real line, there are no poles for
s > Θ, and at s = Θ there is a pole with residue

c+
1

2c1

(
eiθ

Θ + it
+

e−iθ

Θ− it

)
= c+ < e

iθ

c1ρ
,

where ζ(s) = c1(s− ρ) +O((s− ρ)2) for s close to ρ, and c1 6= 0 (since by assumption ρ is a simple zero).
On the other hand, as in the proof given in lectures, from the integral expression we see that the integral

is ≥ −C for some absolute constant C as s→ Θ from the right along the real axis. It follows that the residue
of the pole at Θ is > 0, and thus we have a contradiction if we choose θ such that eiθ/c1ρ = −1/ |c1ρ| and
choose c = 1/2 |c1ρ|. Thus M(x) ≥ cxΘ for arbitrarily large x, and similarly M(x) ≤ −cxΘ for arbitrarily
large x, and so M(x) = Ω±(xΘ).

For part (c), suppose that M(x) ≤ cxΘ(log x)m−1 for all sufficiently large x, where c will be chosen later.
As the hint suggests, we consider the integral

F (s) =

∫ ∞
1

(
cxΘ(log x)m−1 −M(x)

)
x−s−1 dx

which converges absolutely for σ > 1 to
c(m− 1)!

(s−Θ)m
− 1

sζ(s)
.

As above, if we multiply the integrand by (1+cos(θ− t log x)) then we arrive at a function with non-negative
integrand which has, for a suitable choice of θ and c, a pole of order m with negative residue at s = Θ,
which contradicts the fact that the integral stays bounded away from −∞ as s → Θ along the real axis.
This contradiction, and a similar argument with the signs reversed, shows that M(x) = Ω±(xΘ(log x)m−1)
as required.
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