Analytic Number Theory Sheet 3

Lent Term 2020

1. Using the fact that $\zeta(s)$ has no zeros in the region $\sigma > 1 - c/\log|t|$ and $|t| \ge 2$ prove that, all in this same region,

(a)
$$\frac{\zeta'}{\zeta}(s) \ll \log|t|$$

Hint: Use Dirichlet series to handle $\sigma > 1 + 1/\log|t|$ and apply the formula for $\frac{\zeta'}{\zeta}$ in terms of the zeros of $\zeta(s)$ to handle the remaining region.

(b)
$$\left|\log \zeta(s)\right| \le \log\log|t| + O(1),$$

(c)
$$\frac{1}{\zeta(s)} \ll \log|t| \, .$$

Solution: When $\sigma > 1$,

$$\left|\frac{\zeta'}{\zeta}(s)\right| \leq \sum_n \frac{\Lambda(n)}{n^\sigma} \ll \frac{1}{\sigma-1},$$

which provides the required estimate when $\sigma \ge 1 + 1/\log|t|$. Otherwise we use the fact that

$$\frac{\zeta'}{\zeta}(s) = \sum_{\rho} \frac{1}{s - \rho} + O(\log|t|)$$

uniformly in the region $5/6 \le \sigma \le 2$ and $|t| \ge 2$, where the sum is over all zeros ρ such that $|\rho - (3/2 + it)| \le 5/6$.

Let $s = \sigma + it$ where $1 - c/2 \log |t| < \sigma \le 1 + 1/\log |t|$. Taking the difference of the above equation

$$\frac{\zeta'}{\zeta}(s) = \frac{\zeta'}{\zeta}(s_1) + \sum_{\rho} \left(\frac{1}{s-\rho} - \frac{1}{s_1 - \rho}\right) + O(\log|t|),$$

where $s_1 = 1 + 1/\log|t| + it$. By the first part of the solution the first term is $O(\log|t|)$. By the zero-free region all of the zeros in the sum are a reasonable distance away from s, so in particular, $|s - \rho| \approx |s_1 - \rho|$ for all such ρ . Therefore

$$\frac{1}{s - \rho} - \frac{1}{s_1 - \rho} \ll \frac{1}{\left|s_1 - \rho\right|^2 \log|t|} \ll \Re \frac{1}{s_1 - \rho}.$$

By the formula again

$$\frac{\zeta'}{\zeta}(s_1) = \sum_{\rho} \frac{1}{s_1 - \rho} + O(\log|t|)$$

and hence

$$\sum_{\rho} \Re \frac{1}{s_1 - \rho} \ll \log|t|$$

and we are done.

For part (b), in the region $\sigma \ge 1 + 1/\log|t|$, by the Dirichlet series representation we get the estimate

$$|\log \zeta(s)| \ll \sum_{n=2}^{\infty} \frac{\Lambda(n)}{\log n} n^{-\sigma} = \log \zeta(\sigma) < \log(1 + 1/(\sigma - 1)) \le \log\log|t| + O(1).$$

Again, for the region $1 - c/2 \log |t| < \sigma \le 1 + 1/\log |t|$ we consider $s_1 = 1 + 1/\log |t| + it$ and the difference $\log \zeta(s) - \log \zeta(s_1)$ to extend the estimate for s_1 down to s. In this case we use the identity that

$$\log \zeta(s) - \log \zeta(s_1) = \int_{s_1}^{s} \frac{\zeta'}{\zeta}(z) dz,$$

which is valid since there are no zeros of $\zeta(s)$ on the line. By part (a) this difference is O(1) and we are done.

For part (c) we simply note that $\log 1/|\zeta(s)| = -\Re \log \zeta(s)$, and so $1/\zeta(s) \ll \log |t|$ follows immediately from part (b).

2. Show that if $|t| \ge 4$ then the number of zeros of $\zeta(s)$ in the disc of radius r around 1+it is $O(r\log|t|)$ for all $r \le 3/4$. Hint: Again, use the formula for $\frac{\zeta'}{\zeta}$ in terms of its zeros and take real parts at s=1+r+it.

Solution: Observe that if $r \le c/\log |t|$ for some sufficiently small constant c > 0 then there are in fact no zeros in the disc of radius r around 1 + it by the zero-free region, so the estimate certainly holds for such small r. On the other hand, for large r, say $1/6 < r \le 3/4$ we can use Jensen's inequality with the function $f(z) = \zeta(2 + it + z)$.

The tricky part is the region $c/\log|t| \le r \le 1/6$. As in the solution to 1a) the formula for $\frac{\zeta'}{\zeta}$ in terms of zeros yields

$$\sum_{\rho} \Re \frac{1}{s_1 - \rho} \ll \log|t|$$

where $s_1 = 1 + r + it$, where the sum is over all zeros ρ such that $|\rho - (3/2 + it)| \le 5/6$. Each term is non-negative, and those zeros in the disc of radius r around 1 + it contribute at least 1/2r, say, and so the number of zeros is $O(r \log |t|)$ as required.

3. If we arrange the non-trivial zeros of the Riemann zeta function in the upper half-plane as $\rho_n = \sigma_n + i\gamma_n$ where $0 < \gamma_1 \le \gamma_2 \le \cdots$ then show that

$$\gamma_n \sim \frac{2\pi n}{\log n}.$$

Deduce that $\sum_{\rho} \frac{1}{|\rho|} = \infty$.

Solution: We use the asymptotic formula

$$N(T) \sim \frac{1}{2\pi} T \log T.$$

In particular,

$$n = N(\gamma_n) = (1 + o(1)) \frac{1}{2\pi} \gamma_n \log \gamma_n.$$

In particular, for sufficiently large $n, \gamma_n \leq n$, and so $\log \log \gamma_n \ll \log \log n$. Taking logarithms

$$\log \gamma_n + O(1) + \log \log \gamma_n = \log n$$

and so $\log \gamma_n = (1 + o(1)) \log n$. It follows that

$$\gamma_n \sim \frac{2\pi n}{\log n}.$$

In particular, since $|\rho_n| \ll 1 + |\gamma_n| \ll n/\log n$,

$$\sum_{n} \frac{1}{|\rho|} \gg \sum_{n} \frac{\log n}{n} = \infty.$$

4. Show that there exists some constant C > 0 such that there is no vertical gap greater than C between successive zeros of $\zeta(s)$, that is,

$$N(T+C) - N(T) > 0$$

for all sufficiently large T.

Solution: Recall the asymptotic formula

$$N(T) = \frac{T}{2\pi} \log \frac{T}{2\pi} - \frac{T}{2\pi} + R(T),$$

say, where $R(T) \ll \log T$. The first term is easier to deal with if we write

$$\frac{T}{2\pi}\log\frac{T}{2\pi} - \frac{T}{2\pi} = \frac{1}{2\pi}\int_0^T \log\frac{t}{2\pi} dt.$$

If we take the difference then

$$N(T+C) - N(T) = \frac{1}{2\pi} \int_{T}^{T+C} \log \frac{t}{2\pi} dt + R(T+C) - R(T).$$

The first term is trivially at least $\frac{C}{2\pi} \log \frac{T}{2\pi}$. Provided we choose C sufficiently large, and $T \geq C$, say, the error terms are in absolute value

$$|R(T+C) - R(T)| < \frac{C}{2\pi} \log \frac{T}{2\pi},$$

and the estimate follows.

- **5.** Let $M(x) = \sum_{n \le x} \mu(n)$. Let $\Theta = \sup \{ \sigma : \zeta(\sigma + it) = 0 \}$.
 - (a) Show that $M(x) = \Omega_{\pm}(x^{\sigma_0})$ for every $\sigma_0 < \Theta$.
 - (b) If there is a simple zero of $\zeta(s)$ at $\rho = \Theta + it$ then show that $M(x) = \Omega_{\pm}(x^{\Theta})$.
 - (c) If there is a zero of $\zeta(s)$ of multiplicity $m \geq 2$ at $\rho = \Theta + it$ then show that

$$M(x) = \Omega_{\pm}(x^{\Theta}(\log x)^{m-1}).$$

In particular, if we could prove that $M(x) = O(x^{1/2})$ then we'd get both the Riemann hypothesis and also that all zeros of $\zeta(s)$ are simple! Hint: Consider the function $\frac{1}{s\zeta(s)} - c\frac{(m-1)!}{(s-\Theta)^m}$ for some constant c > 0.

Solution: We mimic the proofs for $\psi(x)$ given in lectures.

For part (a), fix $\sigma_0 < \Theta$, and suppose that for all sufficiently large x, we have the estimate $M(x) \le cx^{\sigma_0}$, where c is a constant. Consider the function

$$F(s) = \int_{1}^{\infty} (cx^{\sigma_0} - M(x)) x^{-s-1} dx.$$

This integral obviously converges absolutely in the half-plane $\sigma > 1$, and it is of the form $\int_1^\infty A(x) x^{-s} dx$ where $A(x) \ge 0$ for all large enough x, so we can apply Landau's lemma.

In the half-plane $\sigma > 1$ we calculate that

$$F(s) = \frac{c}{s - \sigma_0} + \frac{1}{s\zeta(s)}.$$

This has a pole at $s = \sigma_0$, but otherwise there are no poles for real s > 0. By Landau's lemma there are no poles for any s with real part $> \sigma_0$, which contradicts the choice of σ_0 , since by the definition of Θ there is a zero of $\zeta(s)$ wih real part $> \sigma_0$.

Mertens conjectured in 1897 that $|M(x)| \le x^{1/2}$ for all $x \ge 1$. This was disproved by Odlyzko and te Riele in 1984.

It follows that for any fixed c > 0 we have $M(x) > cx^{\sigma_0}$ for arbitrarily large x. Similarly $M(x) < -cx^{\sigma_0}$, and so $M(x) = \Omega_{\pm}(x^{\sigma_0})$ as required.

For part (b), suppose that there is a simple zero of $\zeta(s)$ at $\rho = \Theta + it$, and let c > 0 be a constant to be chosen later. Suppose that $M(x) \leq cx^{\Theta}$ for all large enough x, and consider the function

$$\int_{1}^{\infty} \left(cx^{\Theta} - M(x) \right) \left(1 + \cos(\theta - t \log x) \right) x^{-s-1} dx$$

where $\theta \in [0, 2\pi)$ will be chosen later. On one hand this is (in the half-plane $\sigma > 1$)

$$F(s) + \frac{e^{i\theta}F(s+it) + e^{-i\theta}F(s-it)}{2}.$$

Note that F has poles at Θ and at zeros of $\zeta(s)$. It follows that, on the real line, there are no poles for $s > \Theta$, and at $s = \Theta$ there is a pole with residue

$$c + \frac{1}{2c_1} \left(\frac{e^{i\theta}}{\Theta + it} + \frac{e^{-i\theta}}{\Theta - it} \right) = c + \Re \frac{e^{i\theta}}{c_1 \rho},$$

where $\zeta(s) = c_1(s-\rho) + O((s-\rho)^2)$ for s close to ρ , and $c_1 \neq 0$ (since by assumption ρ is a simple zero).

On the other hand, as in the proof given in lectures, from the integral expression we see that the integral is $\geq -C$ for some absolute constant C as $s \to \Theta$ from the right along the real axis. It follows that the residue of the pole at Θ is > 0, and thus we have a contradiction if we choose θ such that $e^{i\theta}/c_1\rho = -1/|c_1\rho|$ and choose $c = 1/2|c_1\rho|$. Thus $M(x) \geq cx^{\Theta}$ for arbitrarily large x, and similarly $M(x) \leq -cx^{\Theta}$ for arbitrarily large x, and so $M(x) = \Omega_{\pm}(x^{\Theta})$.

For part (c), suppose that $M(x) \leq cx^{\Theta}(\log x)^{m-1}$ for all sufficiently large x, where c will be chosen later. As the hint suggests, we consider the integral

$$F(s) = \int_1^\infty \left(cx^{\Theta} (\log x)^{m-1} - M(x) \right) x^{-s-1} dx$$

which converges absolutely for $\sigma > 1$ to

$$\frac{c(m-1)!}{(s-\Theta)^m} - \frac{1}{s\zeta(s)}.$$

As above, if we multiply the integrand by $(1 + \cos(\theta - t \log x))$ then we arrive at a function with non-negative integrand which has, for a suitable choice of θ and c, a pole of order m with negative residue at $s = \Theta$, which contradicts the fact that the integral stays bounded away from $-\infty$ as $s \to \Theta$ along the real axis. This contradiction, and a similar argument with the signs reversed, shows that $M(x) = \Omega_{\pm}(x^{\Theta}(\log x)^{m-1})$ as required.