
Analytic Number Theory Sheet 4 - Solutions

Lent Term 2020

1. Show that for σ > 1/2 ∫ T

0

|ζ(σ + it)|4 dt ∼ ζ(2σ)4

ζ(4σ)
T.

Solution: This question was mistakenly much more difficult than intended, since it suffers from the same
defect as the proof of Theorem 15 in the lecture notes. I have below given a direct proof for those interested,
and the proof of Theorem 15 can be fixed in a similar fashion.

We will use the approximate functional equation, with x = y = (t/2π)1/2, which implies that for any
t ∈ [0, T ],

ζ(σ + it) =
∑
n≤x

1

nσ+it
+ χ(s)

∑
n≤x

1

n1−σ−it
+O(t−1/4) = Z1 + Z2 +O(t−1/4),

say. We will first show that ∫ T

0

|Z1|4 dt ∼ ζ(2σ)4

ζ(4σ)
T.

Expanding out the fourth power and changing the order of summation and integral, the left-hand side is

∑
a,b,c,d≤(T/2π)1/2

(abcd)−σ
∫ T

M

(ab/cd)−it dt.

where M = 2πmax(a2, b2, c2, d2). The diagonal contribution where ab = cd contributes∑
a,b≤(T/2π)1/2

(ab)−2σ
∑

c,d≤(T/2π)1/2
1ab=cd(T −M).

Note that

∑
a,b,c,d≤(T/2π)1/2

1ab=cd(ab)
−2σ =

∑
n≤(T/2π)1/2

τ(n)2

n2σ
+O

 ∑
(T/2π)1/2<n≤T/2π

τ(n)2

n2σ

 .

Furthermore, using τ(n)�ε n
ε,

∑
n≤x

τ(n)2

n2σ
=

∞∑
n=1

τ(n)2

n2σ
+Oε(x

1−2σ+ε) =
ζ(2σ)4

ζ(4σ)
+Oε(x

1−2σ+ε)

and so ∑
a,b,c,d≤(T/2π)1/2

1ab=cd(ab)
−2σ =

ζ(2σ)4

ζ(4σ)
+Oε(T

1/2−σ+ε)

Furthermore, ∑
a,b,c,d≤(T/2π)1/2

1ab=cd
M

(ab)2σ
�

∑
a,b,c,d≤(T/2π)1/2

1ab=cd
a2

(abcd)σ
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which is

�
∑

a,b≤(T/2π)1/2

a2τ(ab)

(ab)2σ
� T ε(1 + T 3/2−σ).

Altogether, then, the diagonal contribution is

ζ(2σ)4

ζ(4σ)
T +Oε(T

3/2−σ+ε + T ε).

The non-diagonal contribution is

�
∑

a,b,c,d≤(T/2π)1/2
(abcd)−σ

1

log(ab/cd)
�

∑
n<m≤T/2π

τ(n)τ(m)

(mn)σ log(n/m)
.

Again using τ(n)� nε this is

�ε T
ε

∑
n<m≤T/2π

1

(mn)σ log(m/n)
.

Using the familiar trick of bounding log(m/n) = − log(1− m−n
m ) > m−n

m this is Oε(T
2−2σε). Altogether then

we have shown that ∫ T

0

∣∣∣∣∣∣
∑

n≤(T/2π)1/2
n−σ−it

∣∣∣∣∣∣
4

dt ∼ ζ(2σ)4

ζ(4σ)
T.

The contribution from the integral over Z2 and the error term may, by similar calculations, be shown to be
o(T ), and hence the claim follows.

2.

(a) Show that if F is a smooth function on [0, 1] then

|F (1/2)| ≤
∫ 1

0

(|F (t)|+ 1
2 |F

′(t)|) dt.

(b) Let t1, . . . , tR ∈ [1/2, T − 1/2] be a set of points such that whenever i 6= j we have |ti − tj | ≥ 1. Show
that for any smooth F : [0, T ]→ C we have

∑
1≤i≤R

|F (tr)|2 ≤
∫ T

0

(
|F (t)|2 + |F (t)F ′(t)|

)
dt.

(c) Deduce that for any an ∈ C we have

∑
1≤i≤R

∣∣∣∣∣∣
∑
n≤N

ann
itr

∣∣∣∣∣∣
2

� (T +N) logN
∑
n≤N

|an|2 .

Solution: For part (a) we apply integration by parts to see that∫ 1/2

0

F (t) dt = 1
2F (1/2)−

∫ 1/2

0

tF ′(t) dt.

On the other hand, it also gives that∫ 1

1/2

F (t) dt = 1
2F (1/2)−

∫ 1/2

0

(t− 1)F ′(t) dt.
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Summing both equalities shows

F (1/2) =

∫ 1

0

F (t) dt+

∫ 1/2

0

tF ′(t) dt+

∫ 1

1/2

(t− 1)F ′(t) dt.

The bound in (a) follows by the triangle inequality.
For (b), we apply part (a) to the function f(t) = F (t+ tr − 1/2)2 to see that

|F (tr)|2 ≤
∫ tr+1/2

tr−1/2

(
|F (t)|2 + |F (t)F ′(t)|

)
dt.

The result now follows summing over 1 ≤ r ≤ R.
Finally, for (c), we apply the result in part (b) to the function F (t) =

∑
n≤N ann

it. The mean-value
estimate proved in lectures shows that∫ T

0

|F (t)|2 dt� (T +N)
∑
n≤N

|an|2 .

Furthermore, by the Cauchy-Schwarz inequality,∫ T

0

|F (t)F ′(t)| dt ≤

(∫ T

0

|F (t)|2 dt

)1/2(∫ T

0

|F ′(t)|2 dt

)1/2

.

The first factor we have already bounded. For the second, note that

F ′(t) =
∑
n≤N

(an log n)nit,

and so we can also use the mean-value estimate from lectures to see that∫ T

0

|F ′(t)|2 dt� (T +N)
∑
n≤N

|an log n|2 � (logN)2(T +N)
∑
n≤N

|an|2 .

Combining these estimates with the upper bound from (b) gives the result.

3. By adapting the proof of Ingham given in lectures, show that if c > 0 is a constant such that ζ( 1
2 +iT )�

T c for all T ≥ 2 then
N(σ, T )� T (2+4c)(1−σ)(log T )O(1)

uniformly for 1/2 ≤ σ ≤ 1. In particular, the Lindelöf hypothesis (that ζ( 1
2 + iT )�ε T

ε for all ε > 0) implies
the Density Conjecture.

Solution: The main difference to the proof of Ingham as given in lectures comes when we need to bound∫ T

0

|ζ(1/2 + it)M(1/2 + it)|2 dt.

In the lectures we bounded this by using the Cauchy-Schwarz inequality and our upper bound on the 4th
moment of ζ(1/2 + it). If we have the pointwise bound |ζ(1/2 + it)| � tc available, however, then instead
we can bound it above by

T 2c

∫ T

0

|M(1/2 + it)|2 dt� T 1+2c log T

(recalling that X ≤ T ). Interpolating between the lines σ = 1/2 and σ = 1 + δ then we arrive at the bound
(using the notation from Ingham’s proof)∫ T

0

|f2(σ + it)|2 dt� T (1+2c)(2−2σ)(log T )O(1).
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Altogether, then, we now have an upper bound of

N(σ, T )�
(
TX1−2σ + T (1+2c)(2−2σ)

)
(log T )O(1).

Making the simple choice of X = T shows that the first summand is � T 2−2σ, and the claimed bound
follows.

4. In this question we sketch an alternative approach to obtaining zero density estimates. Let M(s) =∑
n≤X

µ(n)
ns , and for 1/2 ≤ α ≤ 1 let

R(α) = {σ + it : α ≤ σ ≤ 1 and T < t ≤ 2T}.

(a) Show that if an =
∑
d|n µ(d)1n/d≤T 1d≤X then for all s ∈ R(α)

ζ(s)M(s) =
∑
n≤TX

an
ns

+O(T−αX1−α logX).

(b) Show that if we choose X1−α ≤ Tα(log T )−2 and X ≤ T then, if s ∈ R(α) is a zero of ζ(s), for some
X ≤ N ≤ TX we have ∣∣∣∣∣∣

∑
N<n≤2N

an
ns

∣∣∣∣∣∣� 1

log T
.

(c) After making a suitable choice of X, combine the result of part (b) with the mean-value estimate of
question 1 to deduce the zero density estimate

N(α, T )� T 4α(1−α)(log T )O(1).

Solution: Note that, by partial summation, in the region R(α)

ζ(s) =
∑
n≤T

1

ns
+O(T−α).

Using the trivial upper bound M(s)� X1−α logX therefore implies that

ζ(s)M(s) =

∑
n≤T

1

ns

∑
m≤X

µ(m)

ms

+O(T−αX1−α logX).

Part (a) now follows immediately, since the first term is just the product of two finite series, where the
coefficient of k−s is

∑
nm=k 1n≤T 1m≤Xµ(m) = ak.

Suppose now that s ∈ R(α) is a zero of ζ(s). By part (a) it follows that

0 = 1 +
∑

1<n≤TX

an
ns

+O
(
T−αX1−α logX

)
.

By our choice of X the error term here is O(1/ log T ), and hence in particular at most 1/2 for large enough
T .

Now note that for 1 < n ≤ X the coefficient an simplifies to just
∑
d|n µ(d), if we also assume that

X ≤ T , which is zero. Therefore we see that∣∣∣∣∣∣
∑

X≤n≤TX

an
ns

∣∣∣∣∣∣ ≥ 1

2
.
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The claim in (b) now follows if we partition the left-hand side into O(log T ) intervals of the shape [N, 2N ]
and use the pigeonhole principle.

Suppose that we have K many zeros of ζ(s) in the region R(α). We know that the result in part (b)
is true for some N for each zero. If we simultaneously pigeonhole, we can deduce that there exists some
X ≤ N ≤ TX that works for at least � K/ log T many such zeros. Therefore, by Question 2, if we choose
any R such zeros which are well-spaced then

R(log T )−2 � (T +N) logN
∑
n≤N

|an|2

n2α
.

Using the upper bound |an| ≤ τ(n) we see that the sum here is � N1−2α(logN)O(1). Therefore we have,
recalling that X ≤ N ≤ XT ,

R� (TX1−2α + (TX)2−2α)(log T )O(1).

Thus, choosing X = T 2α−1/(log T )2, we have

R� T 4α(1−α)(log T )O(1).

Note that that this choice of X satisfies the conditions in part (b) since α ∈ [1/2, 1] and (1− α)(2α − 1) =
3α − 1 − 2α2 ≤ α. The claimed upper bound on N(σ, T ) now follows since we can partition the full set of
zeros into well-spaced sets at a cost of O(log T ).

5. Fix some σ > 1.

(a) Show that for all t
|ζ(σ + it)| ≤ ζ(σ).

(b) Show that for any N ≥ 1 and t ≥ 0

|ζ(σ + it)| ≥
N∑
n=1

cos(t log n)

nσ
−
∑
n>N

1

nσ
.

(c) Show that, for any a1, . . . , aN ∈ R and ε > 0 there exist arbitrarily large t such that there exist
m1, . . . ,mN ∈ N with

|tan −mn| ≤ ε

for 1 ≤ n ≤ N .

(d) Show that, for any ε > 0, there are arbitrarily large t such that

|ζ(σ + it)| ≥ (1− ε)ζ(σ).

Solution: Part (a) follows immediately from the existence of a Dirchlet series and the triangle inequality:

|ζ(σ + it)| =

∣∣∣∣∣
∞∑
n=1

1

nσ+it

∣∣∣∣∣ ≤
∞∑
n=1

1

nσ
= ζ(σ).

For part (b), we in fact give a lower bound for the real part of ζ(σ + it), by dividing into two sums:

<ζ(σ + it) = <
N∑
n=1

1

nσ+it
+ <

∑
n>N

1

nσ+it
.

The second sum is at most
∑
n>N

1
nσ in absolute value by the triangle inequality, and hence

<ζ(σ + it) ≥
N∑
n=1

< 1

nσ+it
−
∑
n>N

1

nσ
,
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and part (b) follows.
Part (c) is a simple application of the pigeonhole principle - for any (x1, . . . , xN ) ∈ RN , consider the

location of the fractional part vector ({x1}, . . . , {xN}) ∈ [0, 1)N . If we divide this into at most 2N ε−N boxes,
each of width ε/2 in every direction, then by the pigeonhole principle in any interval of length at least 4N ε−N ,
say, there exist two distinct t1, t2 such that the fractional parts of both t1 · a and t2 · a lie in the same box,
and therefore the fractional parts of (t1 − t2) · a are all in [−ε, ε].

This shows the existence of at least one such t ∈ [1, (4/ε)N ]. The existence of infinitely many such t
follows by applying this same result to T k · a for some large T and all k ∈ N.

Finally, for part (d), we apply the result of part (c) with an = 1
π log n, to find arbitrarily large t such

that, for all 1 ≤ n ≤ N ,
|t log n− πmn| ≤ ε/2

for some integer mn. Since cos has period π and cos(x) ≥ 1 − |x| for x ∈ [0, 1/4], it follows from part (b)
that

|ζ(σ + it)| ≥
N∑
n=1

1− ε/2
nσ

−
∑
n>N

1

nσ

= (1− ε/2)ζ(σ)− (2− ε)
∑
n>N

1

nσ
.

The result follows from the fact that ζ(σ) > 1/(σ − 1) and
∑
n>N

1
nσ < N1−σ/σ − 1 (if we choose N such

that 4N1−σ < ε).
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