Analytic Number Theory Sheet 4

Lent Term 2019

Questions 3 and 4 will be marked.

- 1. Show that if $f: \mathbb{N} \to \mathbb{C}$ is a multiplicative function with period q and f(n) = 0 whenever (n, q) > 1 then f is a Dirichlet character modulo q.
- 2. (a) Show that, if χ is a non-principal Dirichlet character modulo q, then

$$\sum_{n \le x} \frac{\chi(n) \log n}{n} = L(1, \chi) \sum_{d \le x} \frac{\Lambda(d)\chi(d)}{d} + O_{\chi} \left(\frac{1}{x} \sum_{d \le x} \Lambda(d) \right).$$

(b) Show that also

$$\sum_{n \le x} \frac{\chi(n) \log n}{n} = -L'(1, \chi) + O_q\left(\frac{\log x}{x}\right).$$

(c) Deduce that

$$\sum_{n \le x} \frac{\chi(n)\Lambda(n)}{n} \ll_{\chi} 1.$$

(d) Deduce further that, if (a,q) = 1, then

$$\sum_{\substack{p \le x \pmod{q}}} \frac{\log p}{p} = \frac{\log x}{\phi(q)} + O_q(1).$$

3. (a) Show that if χ is a non-principal character modulo q then

$$\sum_{n > x} \frac{\chi(n)}{n^{1/2}} \ll_{\chi} \frac{1}{x^{1/2}}.$$

(b) Show that, if $r(n) = \sum_{d|n} \chi(d)$, then

$$\sum_{n \le x} \frac{r(n)}{n^{1/2}} = 2x^{1/2}L(1,\chi) + O_{\chi}(1).$$

- (c) Show that if χ is a quadratic character then $L(1,\chi) > 0$.
- 4. (a) Show that, if χ_1 and χ_2 are two Dirichlet characters of moduli q_1 and q_2 respectively, and if $\chi_1\chi_2$ is non principal, then $L(s,\chi_1)L(s,\chi_2)$ has at most one real zero β such that

1

$$1 - \frac{c}{\log(q_1 q_2)} < \beta < 1,$$

where c > 0 is some absolute constant.

- (b) Deduce that there is some c > 0 such that if (q_i) is a strictly increasing sequence such that for each q_i there is an exceptional zero $\beta_i > 1 c/(\log q_i)$ then $q_{i+1} > q_i^2$.
- (c) Deduce that, if we define an exceptional zero β to be one such that $\beta > 1 c/\log q$, for some sufficiently small c > 0, then the number of q with an exceptional zero in [1, Q] is $O(\log \log Q)$.
- 5. Let a be a fixed non-zero integer. Show that the number of primes $p \le x$ such that p + x is square-free is $\sim c(a) \text{li}(x)$ for some explicit constant c(a) > 0.