Analytic Number Theory Sheet 4

Lent Term 2019

Questions 3 and 4 will be marked.

1. Show that if f : N — C is a multiplicative function with period ¢ and f(n) = 0 whenever (n,q) > 1
then f is a Dirichlet character modulo q.

2. (a) Show that, if x is a non-principal Dirichlet character modulo ¢, then
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(b) Show that also
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(¢) Deduce that
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(d) Deduce further that, if (a,q) = 1, then
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3. (a) Show that if x is a non-principal character modulo ¢ then
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(b) Show that, if r(n) =3_,,, x(d), then
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(¢) Show that if x is a quadratic character then L(1,x) > 0.

4. (a) Show that, if x1 and x2 are two Dirichlet characters of moduli ¢; and g¢o respectively, and if x1x2
is non principal, then L(s, x1)L(s, x2) has at most one real zero 5 such that
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where ¢ > 0 is some absolute constant.



(b) Deduce that there is some ¢ > 0 such that if (¢;) is a strictly increasing sequence such that for
each ¢; there is an exceptional zero 3; > 1 — ¢/(log ¢;) then ¢; 11 > ¢?.

(c¢) Deduce that, if we define an exceptional zero 8 to be one such that § > 1 — ¢/logg, for some
sufficiently small ¢ > 0, then the number of ¢ with an exceptional zero in [1,Q)] is O(loglog Q).

5. Let a be a fixed non-zero integer. Show that the number of primes p < z such that p+ «x is square-free
is ~ ¢(a)li(z) for some explicit constant c¢(a) > 0.



