ANALYSIS DIGEST

THOMAS F. BLOOM

This is a summary of basic undergraduate analysis, both real and complex. The application in mind
is towards analytic number theory. I have attempted to actually give the proper definitions and at least
sketch proofs of the important results. It would be a terrible idea to try and learn analysis from this, but
hopefully it will serve as a reminder of things once learnt but forgotten. Comments and corrections welcome
at tb634Qcam.ac.uk.

1. REAL ANALYSIS

Given any E C R we define the outer measure as

N(E)= inf bi — a;).
(B)= peitf 20 =99

A set E is Lebesgue measurable if, for every A C R,
A(A) =N (ANE)+ (AN E°).

We can then define its measure A(E) = A\*(E) (so A is countably additive on disjoint sets). The class of
measurable sets is a g-algebra, in that it is closed under complements and countable unions. Every interval
is measurable.

A meausurable function is a function f : R — R such that {z : f(z) > a} is a measurable set for every
a € R. A function f: R — R is simple if it only takes finitely many values, so that

and without loss of generality we can assume the a; are distinct and the E; are disjoint and non-empty. If
f:R —[0,00) is a measurable simple function (i.e. each of the E; is measurable) then by definition

/f(x) dx = Z%‘M(Ei)-

We extend this to all measurable functions f : R — [0, c0] by defining

[ #a@)do=sup ( [ da:)

where the supremum is over all s : R — [0, 00) which are measurable simple functions such that s < f. If F
is a measurable set then

[ t@de = [ s da

We can extend the definition of integral to functions f : R — R by defining

[t@dar= [ @ [ 1@

where f* = max(f,0) and f~ = f* — f. We can similarly extend to f : R — C by splitting up into real
and imaginary parts. We say that f is integrable if [ |f| < co. It is easy to check from the definition that
the integral is linear and monotone, so that if f < g then [ f < [g.

Theorem 1 (Monotone Convergence Theorem). If f, : R — Rxq is a monotone increasing sequence of
measurable non-negative functions then

/ lim fo(z)dz = lim [ fo(z)da.

n—00 n— 00
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Proof. For each j we have f;(z) <lim, o fn(z) = f(x) and hence

/f] dx</f

and the sequence of integrals [ f, is monotone increasing, so that

Jim fn=sup/fn S/f.

For the reverse inequality, let s : R — R be a simple measurable function such that s < f. Fix some « € (0,1)
and let E, = {x € R: f,(z) > as(z)}, so that E,, C Fy,+1. Let Fi = Eq, and for n > 2 let F,, = E,\Ey,_1,
so that Fy, Fs, ... are measurable disjoint sets. Moreover, since each x is in some F,, for large enough n, we
know that R = UF;. Countable additivity implies that

a/s(m)dx:aZ/.sa: dz

—ajin 3 [ s

1<i<n

=« lim s(z)dx
n—oo En

< lim [ fo(z)dax

n— oo

Since a < 1 was arbitrary, it follows that f s < limy, o0 fn, and so by definition f [ <lim, o fn.

Lemma 1 (Fatou’s Lemma). If f,, : R — R>¢ is a sequence of measurable non-negative functions then

/ liminf f,(z) dz < liminf / fulz

n— oo n— oo

Proof. Let gx) = infg>y fr(z) so that g, < f, and the sequence g,(x) is monotone increasing. By the
monotone convergence theorem

/liminf fn(z)de :/ lim g, (z)dz
n—oo

n— oo

= lim [ g,(z)dz

n— 00

n— oo

< liminf/fn(a:) dx

= lim inf/gn(x) dz

n—oo

O

Theorem 2. If f,, : R — R is a sequence of measurable functions such that f, — f pointwise and |f,(x)| <
g(x) for some integrable function g and almost all x then

lim [ f.(x) dx:/ lim f(z)dx

n—0o0 n—oo

Proof. Let f(z) be the pointwise limit of f,,(z). We have that |f(z)| < g(x). It follows that

[ [n]< [l

Since |f — fn| < 2g, we may apply Fatou’s lemma to the function 2¢g(z) — | f(z) — fn(2)], so that

[ timint2g(0) - 7() = fuo)] < it [ 29(0) = |$(0)  fula)].
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Since g is integrable, we deduce that

limsup/|fffn| < /limsup|f—fn| =0.
n— oo

n—oo

It follows that the limit exists and is 0. Hence

nlggo‘/f/fn

Lemma 2 (Mean value theorem). If f : [a,b] — R is continuous then there exists ¢ € (a,b) such that

< lm [ 1f= =0
n—oo S

b
[ f@yde = 0 -a.
If f : [a,b] = R is continuous and differentiable on (a,b) then there exists ¢ € (a,b) such that

f’(c) — f(bl)):i(a)

Proof. Let m < M be such that f([a,b]) = [m, M]. We have

b
bia/ flz)de < M.

m <

The result follows from the intermediate value theorem.

For the second, translating by rz if necessary for some r, we can assume that f(a) = f(b). Again, let
f(la,b]) = [m, M]. If both maximum and minimum are attained at a and b then f is constant so f' = 0.
Suppose that the maximum M is attained at some ¢ € (a,b). If we choose h > 0 small enough such that
¢+ h € (a,b) then

fletm £ _,
5 <
If h < 0 is small enough then
fleth) —f)
h >
Since f is differentiable at ¢ the limits as h — 0~ and h — 07 must agree, so f/(c) = 0. O

Theorem 3 (Fundamental Theorem of Calculus). If f : [a,b] — R is continuous then the function

F(z) = / Ft)dt

is uniformly continous on [a,b] and is differentiable on (a,b), where F'(x) = f(z). In particular, if f :
[a,b] = R is continuous and F'(z) = f(x) for x € [a,b] then

b
/ f(@)dx = F(b) — F(a).
Proof. The first part follows from the mean-value theorem and the definition

F,(x):}llig%)F(xﬂ—h})L—F(x).

The second part follows from the fact that if f/ = 0 then f is constant, which also follows from the mean-value
theorem. O
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1.1. Other notions of integral. If f : [a,b] — R is a bounded function then we say that it is Darboux
integrable if

supZ i —xi—1) inf mfz —xi—1) sup f(x)

Ii—lSISHE zi—1<z<z

where the supremum and infimum are both taken over all partltlons a =29 <z < - <xy=0> This

common value is defined to be fab f(z)da.
We say that f : [a,b] — R is Riemann integrable if there is some I such that for all € > 0 there exists
d > 0 such that for any partition a = xo < 1 < -+ < &, = b with max(z; — ;1) < § and any choice of

ti S [in_l)],‘i]
‘Z(xi —zi1)f(t) —I| <e

We define f; flz)dz =1.

A bounded function on a compact interval is Riemann integrable if and only if it is Darboux integrable if
and only if it is continuous at all points except possibly a set of Lebesgue measure zero.

If we change the definition of the Riemann integral to replace (x; — x;—1) by g(z;) — g(x;—1) for some
g : [a,b] — R then this is the Riemann-Stieltjes integral, denoted by

[ rrasta

This exists if, for example, f is continuous and ¢ is of bounded variation on [a, b], that is, Y |g(x;) — g(zi—1)| =
O(1) for every partition of [a,b] (where the constant may depend on a, b, and g, but is independent of the
partition). The Riemann-Stieltjes integral has the useful property of integration by parts, in that

b b
/f(x)dg(m):f(b)g(b)*f(a)g(a)*/ g(x)df(z),

and either integral exists if and only if the other does. Furthermore, if g is continuously differentiable then

[ = [ s

whenever the integral on the left-hand side exists.

2. COMPLEX ANALYSIS

As is traditional in analytic number theory we will often write s = o + it € C for an arbitrary complex
variable, in which case ¢ = Rs is the real part of s and ¢t = Qs is the imaginary part. The derivative of a
function f : C — C at a point s is defined to be

zZ—S zZ— 8
Implicit in this definition is the fact the limit exists and remains the same for any sequence z, — s. A
neighbourhood of s is a bounded open set which contains s. We say that f is holomorphic on an open set
U if f'(s) exists for every s € U, and that f is holomorphic at s if f is holomorphic on some neighbourhood
of s. A function is entire if it is holomorphic on C.

A smooth curve is a continuous function « : [a,b] — C with a non-vanishing continuous derivative which is
injective (except possibly at the endpoints). More generally, a contour is a finite sequence of smooth curves
joined at the endpoints. The contour integral of f along a smooth curve 7 is

b
/ f(s)ds = / SO (1) dt

which is extended in the obvious fashion for general contours.

Theorem 4 (Fundamental Theorem of Calculus). If 7 : [a,b] — U where U is some open set, and if f is
continuous at each point of v, and f = F' for some F : U — C then

/ f(2)dz = F(y(5)) — F((a)).
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Proof. By definition and the chain rule

b b
/ f(z)de = / F/(4(t) () dt = / (Fon)(t)dt.

a

The result now follows by considering real and imaginary parts and applying the real fundamental theorem
of calculus. |

Theorem 5 (Cauchy’s theorem). If U is an open simply connected set, f is holomorphic on U, and vy is a
closed contour in U, then
/ f(s)ds=0.
.

Proof. First note that it is true when f is a polynomial by the fundamental theorem of calculus. Now near
2o approximate f(z) by f(z0)+ (2 —20)f'(20). This proves the result if the diameter of v is sufficiently small.
To recover the result for arbitrarily large triangle contours subdivide the triangle into smaller triangles.

We can then deduce that if U is a convex region then, for any a € U, the function F(z) = f[a,z] f(w)dw
is holomorphic in U with F’ = f, and hence by the fundamental theorem of calculus again this establishes
the result for a convex region.

We can then recover the result for arbitrary polygonal contours by triangulating. Finally, approximate an
arbitrary contour with a polygon (such that the area between the polygonal approximation and the actual
contour is convex, so we can apply the previous case to ‘move’ the contour to the polygon). O

Theorem 6 (Cauchy integral formula). If D is a closed disc with boundary circle C' and f is holomorphic
on a neighbourhood of D then for every a in the interior of D

fla) = 1 mds.

27 Jos—a

Proof. By Cauchy’s theorem the value of the integral remains unchanged if we move D to become a disc of
radius  with a as the centre. Note that [, c ﬁ ds = 2mi. We then bound the difference

2m 0y _ ) )
&ds—%ﬁf(a) = flatre .3 fla) re'd d9’ < sup |f(a+1"ew) - f(a)|.
cs—a 0 re’ 0€[0,27]
The right-hand side tends to 0 as » — 0, since f is continuous at a. ]

Theorem 7. If f is holomorphic on some open set U then f has derivatives of all orders in U. Furthermore,

forallae U andn > 1,
|
gy~ M fls)
fie) = 55 L (5 — a)nti ds,

where v C U s some circular contour containing a.

Proof. This follows from Cauchy’s integral formula combined with the definition of derivative (and induction).
O

Theorem 8. If v is a path and f1, fa, ... are continous on ~y such that there exist constants M, with > M,
converging and |f,, ()| < M, for alln and z € v then f(z) = > o, fn(2) exists, is continuous, and

Lf(z)dzi/{fn(z)dz.

Theorem 9. Fvery holomorphic function is analytic. That is, if f is holomorphic on some neighbourhood
of a then there is some open disc centred at a in which f can be expanded as a convergent power series

fl9) = cals —a)".
n=0
The coefficients c,, are
_ S 1 / _Jw)
T T omi c (w—a)ntl dw,

where C' is any circle centred at a on and within which f is holomorphic.
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Proof. Let v be some small disc centred at a, so that for all z in this disc

f(z)= % : Sf(jl ds.
Expand out
1 (i (z — a)")
s—z s—a\‘=(s—a)
and interchange the sum and integral, which is valid since
(z—a)" |z —al”
GG <
the sum of which converges since |z —a| < r. O

Theorem 10 (Identity Theorem). If f and g are both holomorphic on an open and connected set D and
f=g forall s €S C D, where S is such that there is some © € D such that every neighbourhood of x in D
contains some point in S, then f =g on D.

Theorem 11 (Maximum modulus principle). If U is a connected open set and f is holomorphic on U, and
if there exists some a € U such that |f(a)| > |f(s)| for all s in a neighbourhood of a, then f is constant on
U.

Proof. By the identity theorem it suffices to show that if f is holomorphic on some disc D with centre a and
|f(2)] <|f(a)] for all z € D then f is constant on D. This follows from Cauchy’s integral formula, since for
any circular v C D,

_ 1 f(z) _ 1 o i0
f(a)—% 7z_adz—% ; fla+re?)db,

and hence |f(a)| = & fOQﬂ | f(a+ re®)| df. Therefore

27
/0 [f(a)| — |fla+re®)| do=0

and so, since the integrand is continuous and non-negative, it must vanish everywhere, so |f| is constant on
D, which forces f to be constant. O

A function f is meromorphic at a point a if there is some neighbourhood of a on which either f or
1/f is holomorphic. In this case there is some n such that (s — a)” f(s) is holomorphic and non-zero in a
neighbourhood of a. If n > 0 then a is a pole of f of order n. If n < 0 then «a is a zero of f of order —n. If f
is meromorphic at a then there is some neighbourhood of a in which f can be expressed as a Laurent series,

oo

Z en(z —a)?,

n=—~k

for some finite integer k. The coefficient c¢_; is the residue of f at a, and is denoted by Res(f, a).

Theorem 12 (Residue theorem). If U is a simply connected open set which contains a simple closed curve
v, f is holomorphic on v, and is holomorphic inside v except for a finite sequence a1, ..., ay, then

k
/f(s) ds = QWiZRes(f, ag).
v i=1

If U is a simply connected open set and f is holomorphic and non-zero on U then we define log f(z) on

v “1(s)
s
log f(z) = a+ /

s f(s)
where b € U and a is such that exp(a) = f(b). The integral can be taken over any path between b and
z. This function is well-defined up to a constant (depending on the choice of a and b) which is always an
integral multiple of 27i.

ds,



