
ANALYSIS DIGEST

THOMAS F. BLOOM

This is a summary of basic undergraduate analysis, both real and complex. The application in mind
is towards analytic number theory. I have attempted to actually give the proper definitions and at least
sketch proofs of the important results. It would be a terrible idea to try and learn analysis from this, but
hopefully it will serve as a reminder of things once learnt but forgotten. Comments and corrections welcome
at tb634@cam.ac.uk.

1. Real Analysis

Given any E ⊂ R we define the outer measure as

λ∗(E) = inf
E⊂∪(ai,bi)

∞∑
k=1

(bi − ai).

A set E is Lebesgue measurable if, for every A ⊂ R,

λ∗(A) = λ∗(A ∩ E) + λ∗(A ∩ Ec).
We can then define its measure λ(E) = λ∗(E) (so λ is countably additive on disjoint sets). The class of
measurable sets is a σ-algebra, in that it is closed under complements and countable unions. Every interval
is measurable.

A meausurable function is a function f : R → R such that {x : f(x) > α} is a measurable set for every
α ∈ R. A function f : R→ R is simple if it only takes finitely many values, so that

f(x) =

n∑
i=1

ai1Ei
(x),

and without loss of generality we can assume the ai are distinct and the Ei are disjoint and non-empty. If
f : R→ [0,∞) is a measurable simple function (i.e. each of the Ei is measurable) then by definition∫

f(x) dx =
∑

aiµ(Ei).

We extend this to all measurable functions f : R→ [0,∞] by defining∫
f(x) dx = sup

(∫
R
s(x) dx

)
where the supremum is over all s : R→ [0,∞) which are measurable simple functions such that s ≤ f . If E
is a measurable set then ∫

E

f(x) dx =

∫
f(x)1E(x) dx.

We can extend the definition of integral to functions f : R→ R by defining∫
f(x) dx =

∫
f+(x) dx−

∫
f−(x) dx,

where f+ = max(f, 0) and f− = f+ − f . We can similarly extend to f : R → C by splitting up into real
and imaginary parts. We say that f is integrable if

∫
|f | < ∞. It is easy to check from the definition that

the integral is linear and monotone, so that if f ≤ g then
∫
f ≤

∫
g.

Theorem 1 (Monotone Convergence Theorem). If fn : R → R≥0 is a monotone increasing sequence of
measurable non-negative functions then∫

lim
n→∞

fn(x) dx = lim
n→∞

∫
fn(x) dx.

1
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Proof. For each j we have fj(x) ≤ limn→∞ fn(x) = f(x) and hence∫
fj(x) dx ≤

∫
f(x) dx,

and the sequence of integrals
∫
fn is monotone increasing, so that

lim
n→∞

∫
fn = sup

∫
fn ≤

∫
f.

For the reverse inequality, let s : R→ R be a simple measurable function such that s ≤ f . Fix some α ∈ (0, 1)
and let En = {x ∈ R : fn(x) ≥ αs(x)}, so that En ⊂ En+1. Let F1 = E1, and for n ≥ 2 let Fn = En\En−1,
so that F1, F2, . . . are measurable disjoint sets. Moreover, since each x is in some En for large enough n, we
know that R = ∪Fi. Countable additivity implies that

α

∫
s(x) dx = α

∑
i

∫
Fi

s(x) dx

= α lim
n→∞

∑
1≤i≤n

∫
Fi

s(x) dx

= α lim
n→∞

∫
En

s(x) dx

≤ lim
n→∞

∫
fn(x) dx.

Since α < 1 was arbitrary, it follows that
∫
s ≤ limn→∞ fn, and so by definition

∫
f ≤ limn→∞ fn.

�

Lemma 1 (Fatou’s Lemma). If fn : R→ R≥0 is a sequence of measurable non-negative functions then∫
lim inf
n→∞

fn(x) dx ≤ lim inf
n→∞

∫
fn(x) dx.

Proof. Let g(x) = infk≥n fk(x) so that gn ≤ fn and the sequence gn(x) is monotone increasing. By the
monotone convergence theorem ∫

lim inf
n→∞

fn(x) dx =

∫
lim
n→∞

gn(x) dx

= lim
n→∞

∫
gn(x) dx

= lim inf
n→∞

∫
gn(x) dx

≤ lim inf
n→∞

∫
fn(x) dx.

�

Theorem 2. If fn : R→ R is a sequence of measurable functions such that fn → f pointwise and |fn(x)| ≤
g(x) for some integrable function g and almost all x then

lim
n→∞

∫
fn(x) dx =

∫
lim
n→∞

f(x) dx.

Proof. Let f(x) be the pointwise limit of fn(x). We have that |f(x)| ≤ g(x). It follows that∣∣∣∣∫ f −
∫
fn

∣∣∣∣ ≤ ∫ |f − fn| .
Since |f − fn| ≤ 2g, we may apply Fatou’s lemma to the function 2g(x)− |f(x)− fn(x)|, so that∫

lim inf
n→∞

2g(x)− |f(x)− fn(x)| ≤ lim inf
n→∞

∫
2g(x)− |f(x)− fn(x)| .
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Since g is integrable, we deduce that

lim sup
n→∞

∫
|f − fn| ≤

∫
lim sup
n→∞

|f − fn| = 0.

It follows that the limit exists and is 0. Hence

lim
n→∞

∣∣∣∣∫ f −
∫
fn

∣∣∣∣ ≤ lim
n→∞

∫
S

|f − fn| = 0.

�

Lemma 2 (Mean value theorem). If f : [a, b]→ R is continuous then there exists c ∈ (a, b) such that∫ b

a

f(x) dx = f(c)(b− a).

If f : [a, b]→ R is continuous and differentiable on (a, b) then there exists c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.

Proof. Let m ≤M be such that f([a, b]) = [m,M ]. We have

m ≤ 1

b− a

∫ b

a

f(x) dx ≤M.

The result follows from the intermediate value theorem.
For the second, translating by rx if necessary for some r, we can assume that f(a) = f(b). Again, let

f([a, b]) = [m,M ]. If both maximum and minimum are attained at a and b then f is constant so f ′ = 0.
Suppose that the maximum M is attained at some c ∈ (a, b). If we choose h > 0 small enough such that
c+ h ∈ (a, b) then

f(c+ h)− f(c)

h
≤ 0.

If h < 0 is small enough then

f(c+ h)− f(c)

h
≥ 0.

Since f is differentiable at c the limits as h→ 0− and h→ 0+ must agree, so f ′(c) = 0. �

Theorem 3 (Fundamental Theorem of Calculus). If f : [a, b]→ R is continuous then the function

F (x) =

∫ x

a

f(t) dt

is uniformly continous on [a, b] and is differentiable on (a, b), where F ′(x) = f(x). In particular, if f :
[a, b]→ R is continuous and F ′(x) = f(x) for x ∈ [a, b] then∫ b

a

f(x) dx = F (b)− F (a).

Proof. The first part follows from the mean-value theorem and the definition

F ′(x) = lim
h→0

F (x+ h)− F (x)

h
.

The second part follows from the fact that if f ′ = 0 then f is constant, which also follows from the mean-value
theorem. �
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1.1. Other notions of integral. If f : [a, b] → R is a bounded function then we say that it is Darboux
integrable if

sup
∑
i

(xi − xi−1) inf
xi−1≤x≤xi

f(x) = inf
∑
i

(xi − xi−1) sup
xi−1≤x≤x

f(x)

where the supremum and infimum are both taken over all partitions a = x0 < x1 < · · · < xn = b. This

common value is defined to be
∫ b
a
f(x) dx.

We say that f : [a, b] → R is Riemann integrable if there is some I such that for all ε > 0 there exists
δ > 0 such that for any partition a = x0 < x1 < · · · < xn = b with max(xi − xi−1) < δ and any choice of
ti ∈ [xi−1, xi] ∣∣∣∑(xi − xi−1)f(ti)− I

∣∣∣ < ε.

We define
∫ b
a
f(x) dx = I.

A bounded function on a compact interval is Riemann integrable if and only if it is Darboux integrable if
and only if it is continuous at all points except possibly a set of Lebesgue measure zero.

If we change the definition of the Riemann integral to replace (xi − xi−1) by g(xi) − g(xi−1) for some
g : [a, b]→ R then this is the Riemann-Stieltjes integral, denoted by∫ b

a

f(x) dg(x).

This exists if, for example, f is continuous and g is of bounded variation on [a, b], that is,
∑
|g(xi)− g(xi−1)| =

O(1) for every partition of [a, b] (where the constant may depend on a, b, and g, but is independent of the
partition). The Riemann-Stieltjes integral has the useful property of integration by parts, in that∫ b

a

f(x) dg(x) = f(b)g(b)− f(a)g(a)−
∫ b

a

g(x) df(x),

and either integral exists if and only if the other does. Furthermore, if g is continuously differentiable then∫ b

a

f(x) dg(x) =

∫ b

a

f(x)g′(x) dx

whenever the integral on the left-hand side exists.

2. Complex Analysis

As is traditional in analytic number theory we will often write s = σ + it ∈ C for an arbitrary complex
variable, in which case σ = <s is the real part of s and t = =s is the imaginary part. The derivative of a
function f : C→ C at a point s is defined to be

f ′(s) = lim
z→s

f(z)− f(s)

z − s
.

Implicit in this definition is the fact the limit exists and remains the same for any sequence zn → s. A
neighbourhood of s is a bounded open set which contains s. We say that f is holomorphic on an open set
U if f ′(s) exists for every s ∈ U , and that f is holomorphic at s if f is holomorphic on some neighbourhood
of s. A function is entire if it is holomorphic on C.

A smooth curve is a continuous function γ : [a, b]→ C with a non-vanishing continuous derivative which is
injective (except possibly at the endpoints). More generally, a contour is a finite sequence of smooth curves
joined at the endpoints. The contour integral of f along a smooth curve γ is∫

γ

f(s) ds =

∫ b

a

f(γ(t))γ′(t) dt,

which is extended in the obvious fashion for general contours.

Theorem 4 (Fundamental Theorem of Calculus). If γ : [a, b] → U where U is some open set, and if f is
continuous at each point of γ, and f = F ′ for some F : U → C then∫

γ

f(z) dz = F (γ(b))− F (γ(a)).
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Proof. By definition and the chain rule∫
γ

f(z) dz =

∫ b

a

F ′(γ(t))γ′(t) dt =

∫ b

a

(F ◦ γ)′(t) dt.

The result now follows by considering real and imaginary parts and applying the real fundamental theorem
of calculus. �

Theorem 5 (Cauchy’s theorem). If U is an open simply connected set, f is holomorphic on U , and γ is a
closed contour in U , then ∫

γ

f(s) ds = 0.

Proof. First note that it is true when f is a polynomial by the fundamental theorem of calculus. Now near
z0 approximate f(z) by f(z0)+(z−z0)f ′(z0). This proves the result if the diameter of γ is sufficiently small.
To recover the result for arbitrarily large triangle contours subdivide the triangle into smaller triangles.

We can then deduce that if U is a convex region then, for any a ∈ U , the function F (z) =
∫
[a,z]

f(w) dw

is holomorphic in U with F ′ = f , and hence by the fundamental theorem of calculus again this establishes
the result for a convex region.

We can then recover the result for arbitrary polygonal contours by triangulating. Finally, approximate an
arbitrary contour with a polygon (such that the area between the polygonal approximation and the actual
contour is convex, so we can apply the previous case to ‘move’ the contour to the polygon). �

Theorem 6 (Cauchy integral formula). If D is a closed disc with boundary circle C and f is holomorphic
on a neighbourhood of D then for every a in the interior of D

f(a) =
1

2πi

∫
C

f(s)

s− a
ds.

Proof. By Cauchy’s theorem the value of the integral remains unchanged if we move D to become a disc of
radius r with a as the centre. Note that

∫
C

1
s−a ds = 2πi. We then bound the difference∣∣∣∣∫

C

f(s)

s− a
ds− 2πif(a)

∣∣∣∣ =

∣∣∣∣∫ 2π

0

f(a+ reiθ)− f(a)

reiθ
reiθ dθ

∣∣∣∣� sup
θ∈[0,2π]

∣∣f(a+ reiθ)− f(a)
∣∣ .

The right-hand side tends to 0 as r → 0, since f is continuous at a. �

Theorem 7. If f is holomorphic on some open set U then f has derivatives of all orders in U . Furthermore,
for all a ∈ U and n ≥ 1,

f (n)(a) =
n!

2πi

∫
γ

f(s)

(s− a)n+1
ds,

where γ ⊂ U is some circular contour containing a.

Proof. This follows from Cauchy’s integral formula combined with the definition of derivative (and induction).
�

Theorem 8. If γ is a path and f1, f2, . . . are continous on γ such that there exist constants Mn with
∑
Mn

converging and |fn(z)| ≤Mn for all n and z ∈ γ then f(z) =
∑∞
n=1 fn(z) exists, is continuous, and∫

γ

f(z) dz =

∞∑
n=1

∫
γ

fn(z) dz.

Theorem 9. Every holomorphic function is analytic. That is, if f is holomorphic on some neighbourhood
of a then there is some open disc centred at a in which f can be expanded as a convergent power series

f(s) =

∞∑
n=0

cn(s− a)n.

The coefficients cn are

cn =
f (n)(a)

n!
=

1

2πi

∫
C

f(w)

(w − a)n+1
dw,

where C is any circle centred at a on and within which f is holomorphic.



6 THOMAS F. BLOOM

Proof. Let γ be some small disc centred at a, so that for all z in this disc

f(z) =
1

2πi

∫
γ

f(s)

s− z
ds.

Expand out

1

s− z
=

1

s− a

( ∞∑
n=0

(z − a)n

(s− a)n

)
and interchange the sum and integral, which is valid since∣∣∣∣ (z − a)n

(s− a)n+1f(s)

∣∣∣∣� |z − a|nrn+1
,

the sum of which converges since |z − a| < r. �

Theorem 10 (Identity Theorem). If f and g are both holomorphic on an open and connected set D and
f = g for all s ∈ S ⊂ D, where S is such that there is some x ∈ D such that every neighbourhood of x in D
contains some point in S, then f ≡ g on D.

Theorem 11 (Maximum modulus principle). If U is a connected open set and f is holomorphic on U , and
if there exists some a ∈ U such that |f(a)| ≥ |f(s)| for all s in a neighbourhood of a, then f is constant on
U .

Proof. By the identity theorem it suffices to show that if f is holomorphic on some disc D with centre a and
|f(z)| ≤ |f(a)| for all z ∈ D then f is constant on D. This follows from Cauchy’s integral formula, since for
any circular γ ⊂ D,

f(a) =
1

2πi

∫
γ

f(z)

z − a
dz =

1

2π

∫ 2π

0

f(a+ reiθ) dθ,

and hence |f(a)| = 1
2π

∫ 2π

0

∣∣f(a+ reiθ)
∣∣ dθ. Therefore∫ 2π

0

|f(a)| −
∣∣f(a+ reiθ)

∣∣ dθ = 0

and so, since the integrand is continuous and non-negative, it must vanish everywhere, so |f | is constant on
D, which forces f to be constant. �

A function f is meromorphic at a point a if there is some neighbourhood of a on which either f or
1/f is holomorphic. In this case there is some n such that (s − a)nf(s) is holomorphic and non-zero in a
neighbourhood of a. If n > 0 then a is a pole of f of order n. If n < 0 then a is a zero of f of order −n. If f
is meromorphic at a then there is some neighbourhood of a in which f can be expressed as a Laurent series,

∞∑
n=−k

cn(z − a)n,

for some finite integer k. The coefficient c−1 is the residue of f at a, and is denoted by Res(f, a).

Theorem 12 (Residue theorem). If U is a simply connected open set which contains a simple closed curve
γ, f is holomorphic on γ, and is holomorphic inside γ except for a finite sequence a1, . . . , ak, then∫

γ

f(s) ds = 2πi

k∑
i=1

Res(f, ak).

If U is a simply connected open set and f is holomorphic and non-zero on U then we define log f(z) on
U as

log f(z) = a+

∫ z

b

f ′(s)

f(s)
ds,

where b ∈ U and a is such that exp(a) = f(b). The integral can be taken over any path between b and
z. This function is well-defined up to a constant (depending on the choice of a and b) which is always an
integral multiple of 2πi.


